| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinva.c |
|
| 2 |
|
grpinva.o |
|
| 3 |
|
grpinva.i |
|
| 4 |
|
grpinva.a |
|
| 5 |
|
grpinva.r |
|
| 6 |
|
grpinvalem.x |
|
| 7 |
|
grpinvalem.e |
|
| 8 |
5
|
ralrimiva |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
eqeq1d |
|
| 11 |
10
|
rexbidv |
|
| 12 |
11
|
cbvralvw |
|
| 13 |
8 12
|
sylib |
|
| 14 |
|
oveq2 |
|
| 15 |
14
|
eqeq1d |
|
| 16 |
15
|
rexbidv |
|
| 17 |
16
|
rspccva |
|
| 18 |
13 6 17
|
syl2an2r |
|
| 19 |
7
|
oveq2d |
|
| 20 |
19
|
adantr |
|
| 21 |
|
simprr |
|
| 22 |
21
|
oveq1d |
|
| 23 |
4
|
caovassg |
|
| 24 |
23
|
ad4ant14 |
|
| 25 |
|
simprl |
|
| 26 |
6
|
adantr |
|
| 27 |
24 25 26 26
|
caovassd |
|
| 28 |
|
oveq2 |
|
| 29 |
|
id |
|
| 30 |
28 29
|
eqeq12d |
|
| 31 |
3
|
ralrimiva |
|
| 32 |
|
oveq2 |
|
| 33 |
|
id |
|
| 34 |
32 33
|
eqeq12d |
|
| 35 |
34
|
cbvralvw |
|
| 36 |
31 35
|
sylib |
|
| 37 |
36
|
adantr |
|
| 38 |
30 37 6
|
rspcdva |
|
| 39 |
38
|
adantr |
|
| 40 |
22 27 39
|
3eqtr3d |
|
| 41 |
20 40 21
|
3eqtr3d |
|
| 42 |
18 41
|
rexlimddv |
|