Description: Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpsubadd.b | |
|
grpsubadd.p | |
||
grpsubadd.m | |
||
Assertion | grpsubadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubadd.b | |
|
2 | grpsubadd.p | |
|
3 | grpsubadd.m | |
|
4 | eqid | |
|
5 | 1 2 4 3 | grpsubval | |
6 | 5 | 3adant3 | |
7 | 6 | adantl | |
8 | 7 | eqeq1d | |
9 | simpl | |
|
10 | simpr1 | |
|
11 | 1 4 | grpinvcl | |
12 | 11 | 3ad2antr2 | |
13 | 1 2 | grpcl | |
14 | 9 10 12 13 | syl3anc | |
15 | simpr3 | |
|
16 | simpr2 | |
|
17 | 1 2 | grprcan | |
18 | 9 14 15 16 17 | syl13anc | |
19 | 1 2 | grpass | |
20 | 9 10 12 16 19 | syl13anc | |
21 | eqid | |
|
22 | 1 2 21 4 | grplinv | |
23 | 22 | 3ad2antr2 | |
24 | 23 | oveq2d | |
25 | 1 2 21 | grprid | |
26 | 25 | 3ad2antr1 | |
27 | 20 24 26 | 3eqtrd | |
28 | 27 | eqeq1d | |
29 | 8 18 28 | 3bitr2d | |
30 | eqcom | |
|
31 | 29 30 | bitrdi | |