Metamath Proof Explorer


Theorem grpsubadd

Description: Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses grpsubadd.b B=BaseG
grpsubadd.p +˙=+G
grpsubadd.m -˙=-G
Assertion grpsubadd GGrpXBYBZBX-˙Y=ZZ+˙Y=X

Proof

Step Hyp Ref Expression
1 grpsubadd.b B=BaseG
2 grpsubadd.p +˙=+G
3 grpsubadd.m -˙=-G
4 eqid invgG=invgG
5 1 2 4 3 grpsubval XBYBX-˙Y=X+˙invgGY
6 5 3adant3 XBYBZBX-˙Y=X+˙invgGY
7 6 adantl GGrpXBYBZBX-˙Y=X+˙invgGY
8 7 eqeq1d GGrpXBYBZBX-˙Y=ZX+˙invgGY=Z
9 simpl GGrpXBYBZBGGrp
10 simpr1 GGrpXBYBZBXB
11 1 4 grpinvcl GGrpYBinvgGYB
12 11 3ad2antr2 GGrpXBYBZBinvgGYB
13 1 2 grpcl GGrpXBinvgGYBX+˙invgGYB
14 9 10 12 13 syl3anc GGrpXBYBZBX+˙invgGYB
15 simpr3 GGrpXBYBZBZB
16 simpr2 GGrpXBYBZBYB
17 1 2 grprcan GGrpX+˙invgGYBZBYBX+˙invgGY+˙Y=Z+˙YX+˙invgGY=Z
18 9 14 15 16 17 syl13anc GGrpXBYBZBX+˙invgGY+˙Y=Z+˙YX+˙invgGY=Z
19 1 2 grpass GGrpXBinvgGYBYBX+˙invgGY+˙Y=X+˙invgGY+˙Y
20 9 10 12 16 19 syl13anc GGrpXBYBZBX+˙invgGY+˙Y=X+˙invgGY+˙Y
21 eqid 0G=0G
22 1 2 21 4 grplinv GGrpYBinvgGY+˙Y=0G
23 22 3ad2antr2 GGrpXBYBZBinvgGY+˙Y=0G
24 23 oveq2d GGrpXBYBZBX+˙invgGY+˙Y=X+˙0G
25 1 2 21 grprid GGrpXBX+˙0G=X
26 25 3ad2antr1 GGrpXBYBZBX+˙0G=X
27 20 24 26 3eqtrd GGrpXBYBZBX+˙invgGY+˙Y=X
28 27 eqeq1d GGrpXBYBZBX+˙invgGY+˙Y=Z+˙YX=Z+˙Y
29 8 18 28 3bitr2d GGrpXBYBZBX-˙Y=ZX=Z+˙Y
30 eqcom X=Z+˙YZ+˙Y=X
31 29 30 bitrdi GGrpXBYBZBX-˙Y=ZZ+˙Y=X