Metamath Proof Explorer


Theorem grpvrinv

Description: Tuple-wise right inverse in groups. (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses grpvlinv.b B=BaseG
grpvlinv.p +˙=+G
grpvlinv.n N=invgG
grpvlinv.z 0˙=0G
Assertion grpvrinv GGrpXBIX+˙fNX=I×0˙

Proof

Step Hyp Ref Expression
1 grpvlinv.b B=BaseG
2 grpvlinv.p +˙=+G
3 grpvlinv.n N=invgG
4 grpvlinv.z 0˙=0G
5 simpll GGrpXBIxIGGrp
6 elmapi XBIX:IB
7 6 adantl GGrpXBIX:IB
8 7 ffvelcdmda GGrpXBIxIXxB
9 1 2 4 3 grprinv GGrpXxBXx+˙NXx=0˙
10 5 8 9 syl2anc GGrpXBIxIXx+˙NXx=0˙
11 10 mpteq2dva GGrpXBIxIXx+˙NXx=xI0˙
12 elmapex XBIBVIV
13 12 simprd XBIIV
14 13 adantl GGrpXBIIV
15 fvexd GGrpXBIxINXxV
16 7 feqmptd GGrpXBIX=xIXx
17 1 3 grpinvf GGrpN:BB
18 fcompt N:BBX:IBNX=xINXx
19 17 6 18 syl2an GGrpXBINX=xINXx
20 14 8 15 16 19 offval2 GGrpXBIX+˙fNX=xIXx+˙NXx
21 fconstmpt I×0˙=xI0˙
22 21 a1i GGrpXBII×0˙=xI0˙
23 11 20 22 3eqtr4d GGrpXBIX+˙fNX=I×0˙