Metamath Proof Explorer


Theorem gsummptres2

Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 22-Jun-2024)

Ref Expression
Hypotheses gsummptres2.b B=BaseG
gsummptres2.z 0˙=0G
gsummptres2.g φGCMnd
gsummptres2.a φAV
gsummptres2.0 φxASY=0˙
gsummptres2.1 φSFin
gsummptres2.y φxAYB
gsummptres2.2 φSA
Assertion gsummptres2 φGxAY=GxSY

Proof

Step Hyp Ref Expression
1 gsummptres2.b B=BaseG
2 gsummptres2.z 0˙=0G
3 gsummptres2.g φGCMnd
4 gsummptres2.a φAV
5 gsummptres2.0 φxASY=0˙
6 gsummptres2.1 φSFin
7 gsummptres2.y φxAYB
8 gsummptres2.2 φSA
9 eqid +G=+G
10 4 mptexd φxAYV
11 funmpt FunxAY
12 11 a1i φFunxAY
13 2 fvexi 0˙V
14 13 a1i φ0˙V
15 5 4 suppss2 φxAYsupp0˙S
16 suppssfifsupp xAYVFunxAY0˙VSFinxAYsupp0˙SfinSupp0˙xAY
17 10 12 14 6 15 16 syl32anc φfinSupp0˙xAY
18 disjdif SAS=
19 18 a1i φSAS=
20 undif SASAS=A
21 8 20 sylib φSAS=A
22 21 eqcomd φA=SAS
23 1 2 9 3 4 7 17 19 22 gsumsplit2 φGxAY=GxSY+GGxASY
24 5 mpteq2dva φxASY=xAS0˙
25 24 oveq2d φGxASY=GxAS0˙
26 3 cmnmndd φGMnd
27 4 difexd φASV
28 2 gsumz GMndASVGxAS0˙=0˙
29 26 27 28 syl2anc φGxAS0˙=0˙
30 25 29 eqtrd φGxASY=0˙
31 30 oveq2d φGxSY+GGxASY=GxSY+G0˙
32 7 ralrimiva φxAYB
33 ssralv SAxAYBxSYB
34 8 32 33 sylc φxSYB
35 1 3 6 34 gsummptcl φGxSYB
36 1 9 2 mndrid GMndGxSYBGxSY+G0˙=GxSY
37 26 35 36 syl2anc φGxSY+G0˙=GxSY
38 23 31 37 3eqtrd φGxAY=GxSY