Metamath Proof Explorer


Theorem hash2iun1dif1

Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022)

Ref Expression
Hypotheses hash2iun1dif1.a φAFin
hash2iun1dif1.b B=Ax
hash2iun1dif1.c φxAyBCFin
hash2iun1dif1.da φDisjxAyBC
hash2iun1dif1.db φxADisjyBC
hash2iun1dif1.1 φxAyBC=1
Assertion hash2iun1dif1 φxAyBC=AA1

Proof

Step Hyp Ref Expression
1 hash2iun1dif1.a φAFin
2 hash2iun1dif1.b B=Ax
3 hash2iun1dif1.c φxAyBCFin
4 hash2iun1dif1.da φDisjxAyBC
5 hash2iun1dif1.db φxADisjyBC
6 hash2iun1dif1.1 φxAyBC=1
7 diffi AFinAxFin
8 1 7 syl φAxFin
9 8 adantr φxAAxFin
10 2 9 eqeltrid φxABFin
11 1 10 3 4 5 hash2iun φxAyBC=xAyBC
12 6 2sumeq2dv φxAyBC=xAyB1
13 1cnd φxA1
14 fsumconst BFin1yB1=B1
15 10 13 14 syl2anc φxAyB1=B1
16 15 sumeq2dv φxAyB1=xAB1
17 2 a1i φxAB=Ax
18 17 fveq2d φxAB=Ax
19 hashdifsn AFinxAAx=A1
20 1 19 sylan φxAAx=A1
21 18 20 eqtrd φxAB=A1
22 21 oveq1d φxAB1=A11
23 22 sumeq2dv φxAB1=xAA11
24 hashcl AFinA0
25 1 24 syl φA0
26 25 nn0cnd φA
27 peano2cnm AA1
28 26 27 syl φA1
29 28 mulridd φA11=A1
30 29 sumeq2sdv φxAA11=xAA1
31 fsumconst AFinA1xAA1=AA1
32 1 28 31 syl2anc φxAA1=AA1
33 30 32 eqtrd φxAA11=AA1
34 16 23 33 3eqtrd φxAyB1=AA1
35 11 12 34 3eqtrd φxAyBC=AA1