Metamath Proof Explorer


Theorem hasheqf1oi

Description: The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 25-Dec-2017) (Revised by AV, 4-May-2021)

Ref Expression
Assertion hasheqf1oi AVff:A1-1 ontoBA=B

Proof

Step Hyp Ref Expression
1 hasheqf1o AFinBFinA=Bff:A1-1 ontoB
2 1 biimprd AFinBFinff:A1-1 ontoBA=B
3 2 a1d AFinBFinAVff:A1-1 ontoBA=B
4 fiinfnf1o AFin¬BFin¬ff:A1-1 ontoB
5 4 pm2.21d AFin¬BFinff:A1-1 ontoBA=B
6 5 a1d AFin¬BFinAVff:A1-1 ontoBA=B
7 fiinfnf1o BFin¬AFin¬gg:B1-1 ontoA
8 19.41v ff:A1-1 ontoBAVff:A1-1 ontoBAV
9 f1orel f:A1-1 ontoBRelf
10 9 adantr f:A1-1 ontoBAVRelf
11 f1ocnvb Relff:A1-1 ontoBf-1:B1-1 ontoA
12 10 11 syl f:A1-1 ontoBAVf:A1-1 ontoBf-1:B1-1 ontoA
13 f1of f:A1-1 ontoBf:AB
14 fex f:ABAVfV
15 13 14 sylan f:A1-1 ontoBAVfV
16 cnvexg fVf-1V
17 f1oeq1 g=f-1g:B1-1 ontoAf-1:B1-1 ontoA
18 17 spcegv f-1Vf-1:B1-1 ontoAgg:B1-1 ontoA
19 15 16 18 3syl f:A1-1 ontoBAVf-1:B1-1 ontoAgg:B1-1 ontoA
20 pm2.24 gg:B1-1 ontoA¬gg:B1-1 ontoAA=B
21 19 20 syl6 f:A1-1 ontoBAVf-1:B1-1 ontoA¬gg:B1-1 ontoAA=B
22 12 21 sylbid f:A1-1 ontoBAVf:A1-1 ontoB¬gg:B1-1 ontoAA=B
23 22 com12 f:A1-1 ontoBf:A1-1 ontoBAV¬gg:B1-1 ontoAA=B
24 23 anabsi5 f:A1-1 ontoBAV¬gg:B1-1 ontoAA=B
25 24 exlimiv ff:A1-1 ontoBAV¬gg:B1-1 ontoAA=B
26 8 25 sylbir ff:A1-1 ontoBAV¬gg:B1-1 ontoAA=B
27 26 ex ff:A1-1 ontoBAV¬gg:B1-1 ontoAA=B
28 27 com13 ¬gg:B1-1 ontoAAVff:A1-1 ontoBA=B
29 7 28 syl BFin¬AFinAVff:A1-1 ontoBA=B
30 29 ancoms ¬AFinBFinAVff:A1-1 ontoBA=B
31 hashinf AV¬AFinA=+∞
32 31 expcom ¬AFinAVA=+∞
33 32 adantr ¬AFin¬BFinAVA=+∞
34 33 imp ¬AFin¬BFinAVA=+∞
35 34 adantr ¬AFin¬BFinAVf:A1-1 ontoBA=+∞
36 simpr ¬AFin¬BFinAVAV
37 f1ofo f:A1-1 ontoBf:AontoB
38 focdmex AVf:AontoBBV
39 38 imp AVf:AontoBBV
40 36 37 39 syl2an ¬AFin¬BFinAVf:A1-1 ontoBBV
41 hashinf BV¬BFinB=+∞
42 41 expcom ¬BFinBVB=+∞
43 42 ad3antlr ¬AFin¬BFinAVf:A1-1 ontoBBVB=+∞
44 40 43 mpd ¬AFin¬BFinAVf:A1-1 ontoBB=+∞
45 35 44 eqtr4d ¬AFin¬BFinAVf:A1-1 ontoBA=B
46 45 ex ¬AFin¬BFinAVf:A1-1 ontoBA=B
47 46 exlimdv ¬AFin¬BFinAVff:A1-1 ontoBA=B
48 47 ex ¬AFin¬BFinAVff:A1-1 ontoBA=B
49 3 6 30 48 4cases AVff:A1-1 ontoBA=B