Metamath Proof Explorer


Theorem haustsms

Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tsmscl.b B=BaseG
tsmscl.1 φGCMnd
tsmscl.2 φGTopSp
tsmscl.a φAV
tsmscl.f φF:AB
haustsms.j J=TopOpenG
haustsms.h φJHaus
Assertion haustsms φ*xxGtsumsF

Proof

Step Hyp Ref Expression
1 tsmscl.b B=BaseG
2 tsmscl.1 φGCMnd
3 tsmscl.2 φGTopSp
4 tsmscl.a φAV
5 tsmscl.f φF:AB
6 haustsms.j J=TopOpenG
7 haustsms.h φJHaus
8 eqid 𝒫AFin=𝒫AFin
9 eqid y𝒫AFinz𝒫AFin|yz=y𝒫AFinz𝒫AFin|yz
10 eqid rany𝒫AFinz𝒫AFin|yz=rany𝒫AFinz𝒫AFin|yz
11 8 9 10 4 tsmsfbas φrany𝒫AFinz𝒫AFin|yzfBas𝒫AFin
12 fgcl rany𝒫AFinz𝒫AFin|yzfBas𝒫AFin𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzFil𝒫AFin
13 11 12 syl φ𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzFil𝒫AFin
14 1 8 2 4 5 tsmslem1 φz𝒫AFinGFzB
15 1 6 tpsuni GTopSpB=J
16 3 15 syl φB=J
17 16 adantr φz𝒫AFinB=J
18 14 17 eleqtrd φz𝒫AFinGFzJ
19 18 fmpttd φz𝒫AFinGFz:𝒫AFinJ
20 eqid J=J
21 20 hausflf JHaus𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzFil𝒫AFinz𝒫AFinGFz:𝒫AFinJ*xxJfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGFz
22 7 13 19 21 syl3anc φ*xxJfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGFz
23 1 6 8 10 2 4 5 tsmsval φGtsumsF=JfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGFz
24 23 eleq2d φxGtsumsFxJfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGFz
25 24 mobidv φ*xxGtsumsF*xxJfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGFz
26 22 25 mpbird φ*xxGtsumsF