Metamath Proof Explorer


Theorem hdmap14lem9

Description: Part of proof of part 14 in Baer p. 49 line 38. (Contributed by NM, 1-Jun-2015)

Ref Expression
Hypotheses hdmap14lem8.h H=LHypK
hdmap14lem8.u U=DVecHKW
hdmap14lem8.v V=BaseU
hdmap14lem8.q +˙=+U
hdmap14lem8.t ·˙=U
hdmap14lem8.o 0˙=0U
hdmap14lem8.n N=LSpanU
hdmap14lem8.r R=ScalarU
hdmap14lem8.b B=BaseR
hdmap14lem8.c C=LCDualKW
hdmap14lem8.d ˙=+C
hdmap14lem8.e ˙=C
hdmap14lem8.p P=ScalarC
hdmap14lem8.a A=BaseP
hdmap14lem8.s S=HDMapKW
hdmap14lem8.k φKHLWH
hdmap14lem8.x φXV0˙
hdmap14lem8.y φYV0˙
hdmap14lem8.f φFB
hdmap14lem8.g φGA
hdmap14lem8.i φIA
hdmap14lem8.xx φSF·˙X=G˙SX
hdmap14lem8.yy φSF·˙Y=I˙SY
hdmap14lem8.ne φNXNY
hdmap14lem8.j φJA
hdmap14lem8.xy φSF·˙X+˙Y=J˙SX+˙Y
Assertion hdmap14lem9 φG=I

Proof

Step Hyp Ref Expression
1 hdmap14lem8.h H=LHypK
2 hdmap14lem8.u U=DVecHKW
3 hdmap14lem8.v V=BaseU
4 hdmap14lem8.q +˙=+U
5 hdmap14lem8.t ·˙=U
6 hdmap14lem8.o 0˙=0U
7 hdmap14lem8.n N=LSpanU
8 hdmap14lem8.r R=ScalarU
9 hdmap14lem8.b B=BaseR
10 hdmap14lem8.c C=LCDualKW
11 hdmap14lem8.d ˙=+C
12 hdmap14lem8.e ˙=C
13 hdmap14lem8.p P=ScalarC
14 hdmap14lem8.a A=BaseP
15 hdmap14lem8.s S=HDMapKW
16 hdmap14lem8.k φKHLWH
17 hdmap14lem8.x φXV0˙
18 hdmap14lem8.y φYV0˙
19 hdmap14lem8.f φFB
20 hdmap14lem8.g φGA
21 hdmap14lem8.i φIA
22 hdmap14lem8.xx φSF·˙X=G˙SX
23 hdmap14lem8.yy φSF·˙Y=I˙SY
24 hdmap14lem8.ne φNXNY
25 hdmap14lem8.j φJA
26 hdmap14lem8.xy φSF·˙X+˙Y=J˙SX+˙Y
27 eqid BaseC=BaseC
28 eqid 0C=0C
29 eqid LSpanC=LSpanC
30 1 10 16 lcdlvec φCLVec
31 1 2 3 6 10 28 27 15 16 17 hdmapnzcl φSXBaseC0C
32 1 2 3 6 10 28 27 15 16 18 hdmapnzcl φSYBaseC0C
33 eqid LSubSpU=LSubSpU
34 eqid mapdKW=mapdKW
35 1 2 16 dvhlmod φULMod
36 17 eldifad φXV
37 3 33 7 lspsncl ULModXVNXLSubSpU
38 35 36 37 syl2anc φNXLSubSpU
39 18 eldifad φYV
40 3 33 7 lspsncl ULModYVNYLSubSpU
41 35 39 40 syl2anc φNYLSubSpU
42 1 2 33 34 16 38 41 mapd11 φmapdKWNX=mapdKWNYNX=NY
43 42 necon3bid φmapdKWNXmapdKWNYNXNY
44 24 43 mpbird φmapdKWNXmapdKWNY
45 1 2 3 7 10 29 34 15 16 36 hdmap10 φmapdKWNX=LSpanCSX
46 1 2 3 7 10 29 34 15 16 39 hdmap10 φmapdKWNY=LSpanCSY
47 44 45 46 3netr3d φLSpanCSXLSpanCSY
48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 hdmap14lem8 φJ˙SX˙J˙SY=G˙SX˙I˙SY
49 27 11 13 14 12 28 29 30 31 32 25 25 20 21 47 48 lvecindp2 φJ=GJ=I
50 49 simpld φJ=G
51 49 simprd φJ=I
52 50 51 eqtr3d φG=I