Metamath Proof Explorer


Theorem hdmap1eq

Description: The defining equation for h(x,x',y)=y' in part (2) in Baer p. 45 line 24. (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmap1val2.h H=LHypK
hdmap1val2.u U=DVecHKW
hdmap1val2.v V=BaseU
hdmap1val2.s -˙=-U
hdmap1val2.o 0˙=0U
hdmap1val2.n N=LSpanU
hdmap1val2.c C=LCDualKW
hdmap1val2.d D=BaseC
hdmap1val2.r R=-C
hdmap1val2.l L=LSpanC
hdmap1val2.m M=mapdKW
hdmap1val2.i I=HDMap1KW
hdmap1val2.k φKHLWH
hdmap1eq.x φXV0˙
hdmap1eq.f φFD
hdmap1eq.y φYV0˙
hdmap1eq.g φGD
hdmap1eq.e φNXNY
hdmap1eq.mn φMNX=LF
Assertion hdmap1eq φIXFY=GMNY=LGMNX-˙Y=LFRG

Proof

Step Hyp Ref Expression
1 hdmap1val2.h H=LHypK
2 hdmap1val2.u U=DVecHKW
3 hdmap1val2.v V=BaseU
4 hdmap1val2.s -˙=-U
5 hdmap1val2.o 0˙=0U
6 hdmap1val2.n N=LSpanU
7 hdmap1val2.c C=LCDualKW
8 hdmap1val2.d D=BaseC
9 hdmap1val2.r R=-C
10 hdmap1val2.l L=LSpanC
11 hdmap1val2.m M=mapdKW
12 hdmap1val2.i I=HDMap1KW
13 hdmap1val2.k φKHLWH
14 hdmap1eq.x φXV0˙
15 hdmap1eq.f φFD
16 hdmap1eq.y φYV0˙
17 hdmap1eq.g φGD
18 hdmap1eq.e φNXNY
19 hdmap1eq.mn φMNX=LF
20 14 eldifad φXV
21 1 2 3 4 5 6 7 8 9 10 11 12 13 20 15 16 hdmap1val2 φIXFY=ιhD|MNY=LhMNX-˙Y=LFRh
22 21 eqeq1d φIXFY=GιhD|MNY=LhMNX-˙Y=LFRh=G
23 1 11 2 3 4 5 6 7 8 9 10 13 14 16 15 18 19 mapdpg φ∃!hDMNY=LhMNX-˙Y=LFRh
24 nfv hφ
25 nfcvd φ_hG
26 nfvd φhMNY=LGMNX-˙Y=LFRG
27 sneq h=Gh=G
28 27 fveq2d h=GLh=LG
29 28 eqeq2d h=GMNY=LhMNY=LG
30 oveq2 h=GFRh=FRG
31 30 sneqd h=GFRh=FRG
32 31 fveq2d h=GLFRh=LFRG
33 32 eqeq2d h=GMNX-˙Y=LFRhMNX-˙Y=LFRG
34 29 33 anbi12d h=GMNY=LhMNX-˙Y=LFRhMNY=LGMNX-˙Y=LFRG
35 34 adantl φh=GMNY=LhMNX-˙Y=LFRhMNY=LGMNX-˙Y=LFRG
36 24 25 26 17 35 riota2df φ∃!hDMNY=LhMNX-˙Y=LFRhMNY=LGMNX-˙Y=LFRGιhD|MNY=LhMNX-˙Y=LFRh=G
37 23 36 mpdan φMNY=LGMNX-˙Y=LFRGιhD|MNY=LhMNX-˙Y=LFRh=G
38 22 37 bitr4d φIXFY=GMNY=LGMNX-˙Y=LFRG