Metamath Proof Explorer


Theorem hdmap1vallem

Description: Value of preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmap1val.h H = LHyp K
hdmap1fval.u U = DVecH K W
hdmap1fval.v V = Base U
hdmap1fval.s - ˙ = - U
hdmap1fval.o 0 ˙ = 0 U
hdmap1fval.n N = LSpan U
hdmap1fval.c C = LCDual K W
hdmap1fval.d D = Base C
hdmap1fval.r R = - C
hdmap1fval.q Q = 0 C
hdmap1fval.j J = LSpan C
hdmap1fval.m M = mapd K W
hdmap1fval.i I = HDMap1 K W
hdmap1fval.k φ K A W H
hdmap1val.t φ T V × D × V
Assertion hdmap1vallem φ I T = if 2 nd T = 0 ˙ Q ι h D | M N 2 nd T = J h M N 1 st 1 st T - ˙ 2 nd T = J 2 nd 1 st T R h

Proof

Step Hyp Ref Expression
1 hdmap1val.h H = LHyp K
2 hdmap1fval.u U = DVecH K W
3 hdmap1fval.v V = Base U
4 hdmap1fval.s - ˙ = - U
5 hdmap1fval.o 0 ˙ = 0 U
6 hdmap1fval.n N = LSpan U
7 hdmap1fval.c C = LCDual K W
8 hdmap1fval.d D = Base C
9 hdmap1fval.r R = - C
10 hdmap1fval.q Q = 0 C
11 hdmap1fval.j J = LSpan C
12 hdmap1fval.m M = mapd K W
13 hdmap1fval.i I = HDMap1 K W
14 hdmap1fval.k φ K A W H
15 hdmap1val.t φ T V × D × V
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 hdmap1fval φ I = x V × D × V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
17 16 fveq1d φ I T = x V × D × V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h T
18 10 fvexi Q V
19 riotaex ι h D | M N 2 nd T = J h M N 1 st 1 st T - ˙ 2 nd T = J 2 nd 1 st T R h V
20 18 19 ifex if 2 nd T = 0 ˙ Q ι h D | M N 2 nd T = J h M N 1 st 1 st T - ˙ 2 nd T = J 2 nd 1 st T R h V
21 fveqeq2 x = T 2 nd x = 0 ˙ 2 nd T = 0 ˙
22 fveq2 x = T 2 nd x = 2 nd T
23 22 sneqd x = T 2 nd x = 2 nd T
24 23 fveq2d x = T N 2 nd x = N 2 nd T
25 24 fveqeq2d x = T M N 2 nd x = J h M N 2 nd T = J h
26 2fveq3 x = T 1 st 1 st x = 1 st 1 st T
27 26 22 oveq12d x = T 1 st 1 st x - ˙ 2 nd x = 1 st 1 st T - ˙ 2 nd T
28 27 sneqd x = T 1 st 1 st x - ˙ 2 nd x = 1 st 1 st T - ˙ 2 nd T
29 28 fveq2d x = T N 1 st 1 st x - ˙ 2 nd x = N 1 st 1 st T - ˙ 2 nd T
30 29 fveq2d x = T M N 1 st 1 st x - ˙ 2 nd x = M N 1 st 1 st T - ˙ 2 nd T
31 2fveq3 x = T 2 nd 1 st x = 2 nd 1 st T
32 31 oveq1d x = T 2 nd 1 st x R h = 2 nd 1 st T R h
33 32 sneqd x = T 2 nd 1 st x R h = 2 nd 1 st T R h
34 33 fveq2d x = T J 2 nd 1 st x R h = J 2 nd 1 st T R h
35 30 34 eqeq12d x = T M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h M N 1 st 1 st T - ˙ 2 nd T = J 2 nd 1 st T R h
36 25 35 anbi12d x = T M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h M N 2 nd T = J h M N 1 st 1 st T - ˙ 2 nd T = J 2 nd 1 st T R h
37 36 riotabidv x = T ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h = ι h D | M N 2 nd T = J h M N 1 st 1 st T - ˙ 2 nd T = J 2 nd 1 st T R h
38 21 37 ifbieq2d x = T if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h = if 2 nd T = 0 ˙ Q ι h D | M N 2 nd T = J h M N 1 st 1 st T - ˙ 2 nd T = J 2 nd 1 st T R h
39 eqid x V × D × V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h = x V × D × V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
40 38 39 fvmptg T V × D × V if 2 nd T = 0 ˙ Q ι h D | M N 2 nd T = J h M N 1 st 1 st T - ˙ 2 nd T = J 2 nd 1 st T R h V x V × D × V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h T = if 2 nd T = 0 ˙ Q ι h D | M N 2 nd T = J h M N 1 st 1 st T - ˙ 2 nd T = J 2 nd 1 st T R h
41 15 20 40 sylancl φ x V × D × V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h T = if 2 nd T = 0 ˙ Q ι h D | M N 2 nd T = J h M N 1 st 1 st T - ˙ 2 nd T = J 2 nd 1 st T R h
42 17 41 eqtrd φ I T = if 2 nd T = 0 ˙ Q ι h D | M N 2 nd T = J h M N 1 st 1 st T - ˙ 2 nd T = J 2 nd 1 st T R h