Metamath Proof Explorer


Theorem hdmapevec

Description: Value of map from vectors to functionals at the reference vector E . (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmapevec.h H=LHypK
hdmapevec.e E=IBaseKILTrnKW
hdmapevec.j J=HVMapKW
hdmapevec.s S=HDMapKW
hdmapevec.k φKHLWH
Assertion hdmapevec φSE=JE

Proof

Step Hyp Ref Expression
1 hdmapevec.h H=LHypK
2 hdmapevec.e E=IBaseKILTrnKW
3 hdmapevec.j J=HVMapKW
4 hdmapevec.s S=HDMapKW
5 hdmapevec.k φKHLWH
6 eqid DVecHKW=DVecHKW
7 eqid BaseDVecHKW=BaseDVecHKW
8 eqid LSpanDVecHKW=LSpanDVecHKW
9 eqid BaseK=BaseK
10 eqid LTrnKW=LTrnKW
11 eqid 0DVecHKW=0DVecHKW
12 1 9 10 6 7 11 2 5 dvheveccl φEBaseDVecHKW0DVecHKW
13 12 eldifad φEBaseDVecHKW
14 1 6 7 8 5 13 dvh2dim φzBaseDVecHKW¬zLSpanDVecHKWE
15 5 3ad2ant1 φzBaseDVecHKW¬zLSpanDVecHKWEKHLWH
16 eqid LCDualKW=LCDualKW
17 eqid BaseLCDualKW=BaseLCDualKW
18 eqid HDMap1KW=HDMap1KW
19 simp2 φzBaseDVecHKW¬zLSpanDVecHKWEzBaseDVecHKW
20 ssid LSpanDVecHKWELSpanDVecHKWE
21 20 20 unssi LSpanDVecHKWELSpanDVecHKWELSpanDVecHKWE
22 21 sseli zLSpanDVecHKWELSpanDVecHKWEzLSpanDVecHKWE
23 22 con3i ¬zLSpanDVecHKWE¬zLSpanDVecHKWELSpanDVecHKWE
24 23 3ad2ant3 φzBaseDVecHKW¬zLSpanDVecHKWE¬zLSpanDVecHKWELSpanDVecHKWE
25 1 2 3 4 15 6 7 8 16 17 18 19 24 hdmapeveclem φzBaseDVecHKW¬zLSpanDVecHKWESE=JE
26 25 rexlimdv3a φzBaseDVecHKW¬zLSpanDVecHKWESE=JE
27 14 26 mpd φSE=JE