Metamath Proof Explorer


Theorem hdmaprnN

Description: Part of proof of part 12 in Baer p. 49 line 21, As=B. (Contributed by NM, 30-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprn.h H = LHyp K
hdmaprn.c C = LCDual K W
hdmaprn.d D = Base C
hdmaprn.s S = HDMap K W
hdmaprn.k φ K HL W H
Assertion hdmaprnN φ ran S = D

Proof

Step Hyp Ref Expression
1 hdmaprn.h H = LHyp K
2 hdmaprn.c C = LCDual K W
3 hdmaprn.d D = Base C
4 hdmaprn.s S = HDMap K W
5 hdmaprn.k φ K HL W H
6 eqid DVecH K W = DVecH K W
7 eqid Base DVecH K W = Base DVecH K W
8 1 6 7 4 5 hdmapfnN φ S Fn Base DVecH K W
9 5 adantr φ s Base DVecH K W K HL W H
10 simpr φ s Base DVecH K W s Base DVecH K W
11 1 6 7 2 3 4 9 10 hdmapcl φ s Base DVecH K W S s D
12 11 ralrimiva φ s Base DVecH K W S s D
13 fnfvrnss S Fn Base DVecH K W s Base DVecH K W S s D ran S D
14 8 12 13 syl2anc φ ran S D
15 eqid LSpan DVecH K W = LSpan DVecH K W
16 eqid 0 C = 0 C
17 eqid LSpan C = LSpan C
18 eqid mapd K W = mapd K W
19 5 adantr φ s D K HL W H
20 simpr φ s D s D
21 1 6 7 15 2 3 16 17 18 4 19 20 hdmaprnlem17N φ s D s ran S
22 14 21 eqelssd φ ran S = D