Metamath Proof Explorer


Theorem hmeontr

Description: Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis hmeoopn.1 X=J
Assertion hmeontr FJHomeoKAXintKFA=FintJA

Proof

Step Hyp Ref Expression
1 hmeoopn.1 X=J
2 hmeocn FJHomeoKFJCnK
3 2 adantr FJHomeoKAXFJCnK
4 imassrn FAranF
5 eqid K=K
6 1 5 hmeof1o FJHomeoKF:X1-1 ontoK
7 6 adantr FJHomeoKAXF:X1-1 ontoK
8 f1ofo F:X1-1 ontoKF:XontoK
9 forn F:XontoKranF=K
10 7 8 9 3syl FJHomeoKAXranF=K
11 4 10 sseqtrid FJHomeoKAXFAK
12 5 cnntri FJCnKFAKF-1intKFAintJF-1FA
13 3 11 12 syl2anc FJHomeoKAXF-1intKFAintJF-1FA
14 f1of1 F:X1-1 ontoKF:X1-1K
15 7 14 syl FJHomeoKAXF:X1-1K
16 f1imacnv F:X1-1KAXF-1FA=A
17 15 16 sylancom FJHomeoKAXF-1FA=A
18 17 fveq2d FJHomeoKAXintJF-1FA=intJA
19 13 18 sseqtrd FJHomeoKAXF-1intKFAintJA
20 f1ofun F:X1-1 ontoKFunF
21 7 20 syl FJHomeoKAXFunF
22 cntop2 FJCnKKTop
23 3 22 syl FJHomeoKAXKTop
24 5 ntrss3 KTopFAKintKFAK
25 23 11 24 syl2anc FJHomeoKAXintKFAK
26 25 10 sseqtrrd FJHomeoKAXintKFAranF
27 funimass1 FunFintKFAranFF-1intKFAintJAintKFAFintJA
28 21 26 27 syl2anc FJHomeoKAXF-1intKFAintJAintKFAFintJA
29 19 28 mpd FJHomeoKAXintKFAFintJA
30 hmeocnvcn FJHomeoKF-1KCnJ
31 1 cnntri F-1KCnJAXF-1-1intJAintKF-1-1A
32 30 31 sylan FJHomeoKAXF-1-1intJAintKF-1-1A
33 imacnvcnv F-1-1intJA=FintJA
34 imacnvcnv F-1-1A=FA
35 34 fveq2i intKF-1-1A=intKFA
36 32 33 35 3sstr3g FJHomeoKAXFintJAintKFA
37 29 36 eqssd FJHomeoKAXintKFA=FintJA