Metamath Proof Explorer


Theorem hoidmvval

Description: The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvval.l L=xFinax,bxifx=0kxvolakbk
hoidmvval.a φA:X
hoidmvval.b φB:X
hoidmvval.x φXFin
Assertion hoidmvval φALXB=ifX=0kXvolAkBk

Proof

Step Hyp Ref Expression
1 hoidmvval.l L=xFinax,bxifx=0kxvolakbk
2 hoidmvval.a φA:X
3 hoidmvval.b φB:X
4 hoidmvval.x φXFin
5 oveq2 x=Xx=X
6 eqeq1 x=Xx=X=
7 prodeq1 x=Xkxvolakbk=kXvolakbk
8 6 7 ifbieq2d x=Xifx=0kxvolakbk=ifX=0kXvolakbk
9 5 5 8 mpoeq123dv x=Xax,bxifx=0kxvolakbk=aX,bXifX=0kXvolakbk
10 ovex XV
11 10 10 mpoex aX,bXifX=0kXvolakbkV
12 11 a1i φaX,bXifX=0kXvolakbkV
13 1 9 4 12 fvmptd3 φLX=aX,bXifX=0kXvolakbk
14 fveq1 a=Aak=Ak
15 14 adantr a=Ab=Bak=Ak
16 fveq1 b=Bbk=Bk
17 16 adantl a=Ab=Bbk=Bk
18 15 17 oveq12d a=Ab=Bakbk=AkBk
19 18 fveq2d a=Ab=Bvolakbk=volAkBk
20 19 prodeq2ad a=Ab=BkXvolakbk=kXvolAkBk
21 20 ifeq2d a=Ab=BifX=0kXvolakbk=ifX=0kXvolAkBk
22 21 adantl φa=Ab=BifX=0kXvolakbk=ifX=0kXvolAkBk
23 reex V
24 23 a1i φV
25 elmapg VXFinAXA:X
26 24 4 25 syl2anc φAXA:X
27 2 26 mpbird φAX
28 elmapg VXFinBXB:X
29 24 4 28 syl2anc φBXB:X
30 3 29 mpbird φBX
31 c0ex 0V
32 prodex kXvolAkBkV
33 31 32 ifex ifX=0kXvolAkBkV
34 33 a1i φifX=0kXvolAkBkV
35 13 22 27 30 34 ovmpod φALXB=ifX=0kXvolAkBk