Metamath Proof Explorer


Theorem hoidmvval

Description: The dimensional volume of a multidimensional half-open interval. Definition 115A (c) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvval.l L = x Fin a x , b x if x = 0 k x vol a k b k
hoidmvval.a φ A : X
hoidmvval.b φ B : X
hoidmvval.x φ X Fin
Assertion hoidmvval φ A L X B = if X = 0 k X vol A k B k

Proof

Step Hyp Ref Expression
1 hoidmvval.l L = x Fin a x , b x if x = 0 k x vol a k b k
2 hoidmvval.a φ A : X
3 hoidmvval.b φ B : X
4 hoidmvval.x φ X Fin
5 oveq2 x = X x = X
6 eqeq1 x = X x = X =
7 prodeq1 x = X k x vol a k b k = k X vol a k b k
8 6 7 ifbieq2d x = X if x = 0 k x vol a k b k = if X = 0 k X vol a k b k
9 5 5 8 mpoeq123dv x = X a x , b x if x = 0 k x vol a k b k = a X , b X if X = 0 k X vol a k b k
10 ovex X V
11 10 10 mpoex a X , b X if X = 0 k X vol a k b k V
12 11 a1i φ a X , b X if X = 0 k X vol a k b k V
13 1 9 4 12 fvmptd3 φ L X = a X , b X if X = 0 k X vol a k b k
14 fveq1 a = A a k = A k
15 14 adantr a = A b = B a k = A k
16 fveq1 b = B b k = B k
17 16 adantl a = A b = B b k = B k
18 15 17 oveq12d a = A b = B a k b k = A k B k
19 18 fveq2d a = A b = B vol a k b k = vol A k B k
20 19 prodeq2ad a = A b = B k X vol a k b k = k X vol A k B k
21 20 ifeq2d a = A b = B if X = 0 k X vol a k b k = if X = 0 k X vol A k B k
22 21 adantl φ a = A b = B if X = 0 k X vol a k b k = if X = 0 k X vol A k B k
23 reex V
24 23 a1i φ V
25 elmapg V X Fin A X A : X
26 24 4 25 syl2anc φ A X A : X
27 2 26 mpbird φ A X
28 elmapg V X Fin B X B : X
29 24 4 28 syl2anc φ B X B : X
30 3 29 mpbird φ B X
31 c0ex 0 V
32 prodex k X vol A k B k V
33 31 32 ifex if X = 0 k X vol A k B k V
34 33 a1i φ if X = 0 k X vol A k B k V
35 13 22 27 30 34 ovmpod φ A L X B = if X = 0 k X vol A k B k