Metamath Proof Explorer


Theorem hoidmvval0b

Description: The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvval0b.l L=xFinax,bxifx=0kxvolakbk
hoidmvval0b.x φXFin
hoidmvval0b.a φA:X
Assertion hoidmvval0b φALXA=0

Proof

Step Hyp Ref Expression
1 hoidmvval0b.l L=xFinax,bxifx=0kxvolakbk
2 hoidmvval0b.x φXFin
3 hoidmvval0b.a φA:X
4 fveq2 X=LX=L
5 4 oveqd X=ALXA=ALA
6 5 adantl φX=ALXA=ALA
7 3 adantr φX=A:X
8 feq2 X=A:XA:
9 8 adantl φX=A:XA:
10 7 9 mpbid φX=A:
11 1 10 10 hoidmv0val φX=ALA=0
12 6 11 eqtrd φX=ALXA=0
13 nfv jφ¬X=
14 2 adantr φ¬X=XFin
15 3 adantr φ¬X=A:X
16 neqne ¬X=X
17 n0 XjjX
18 16 17 sylib ¬X=jjX
19 18 adantl φ¬X=jjX
20 simpr φjXjX
21 3 ffvelcdmda φjXAj
22 eqidd φjXAj=Aj
23 21 22 eqled φjXAjAj
24 20 23 jca φjXjXAjAj
25 24 ex φjXjXAjAj
26 25 adantr φ¬X=jXjXAjAj
27 26 eximdv φ¬X=jjXjjXAjAj
28 19 27 mpd φ¬X=jjXAjAj
29 df-rex jXAjAjjjXAjAj
30 28 29 sylibr φ¬X=jXAjAj
31 13 1 14 15 15 30 hoidmvval0 φ¬X=ALXA=0
32 12 31 pm2.61dan φALXA=0