Metamath Proof Explorer


Theorem hstle

Description: Ordering property of a Hilbert-space-valued state. (Contributed by NM, 26-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstle SCHStatesACBCABnormSAnormSB

Proof

Step Hyp Ref Expression
1 hstnmoc SCHStatesBCnormSB2+normSB2=1
2 1 adantlr SCHStatesACBCnormSB2+normSB2=1
3 2 oveq2d SCHStatesACBCnormSA2+normSB2+normSB2=normSA2+1
4 hstcl SCHStatesACSA
5 normcl SAnormSA
6 4 5 syl SCHStatesACnormSA
7 6 resqcld SCHStatesACnormSA2
8 7 adantr SCHStatesACBCnormSA2
9 8 recnd SCHStatesACBCnormSA2
10 hstcl SCHStatesBCSB
11 normcl SBnormSB
12 10 11 syl SCHStatesBCnormSB
13 12 resqcld SCHStatesBCnormSB2
14 13 adantlr SCHStatesACBCnormSB2
15 14 recnd SCHStatesACBCnormSB2
16 choccl BCBC
17 hstcl SCHStatesBCSB
18 16 17 sylan2 SCHStatesBCSB
19 normcl SBnormSB
20 18 19 syl SCHStatesBCnormSB
21 20 resqcld SCHStatesBCnormSB2
22 21 adantlr SCHStatesACBCnormSB2
23 22 recnd SCHStatesACBCnormSB2
24 9 15 23 add12d SCHStatesACBCnormSA2+normSB2+normSB2=normSB2+normSA2+normSB2
25 3 24 eqtr3d SCHStatesACBCnormSA2+1=normSB2+normSA2+normSB2
26 25 adantrr SCHStatesACBCABnormSA2+1=normSB2+normSA2+normSB2
27 16 adantr BCABBC
28 ococ BCB=B
29 28 sseq2d BCABAB
30 29 biimpar BCABAB
31 27 30 jca BCABBCAB
32 hstpyth SCHStatesACBCABnormSAB2=normSA2+normSB2
33 31 32 sylan2 SCHStatesACBCABnormSAB2=normSA2+normSB2
34 chjcl ACBCABC
35 16 34 sylan2 ACBCABC
36 hstcl SCHStatesABCSAB
37 35 36 sylan2 SCHStatesACBCSAB
38 37 anassrs SCHStatesACBCSAB
39 normcl SABnormSAB
40 38 39 syl SCHStatesACBCnormSAB
41 normge0 SAB0normSAB
42 38 41 syl SCHStatesACBC0normSAB
43 hstle1 SCHStatesABCnormSAB1
44 35 43 sylan2 SCHStatesACBCnormSAB1
45 44 anassrs SCHStatesACBCnormSAB1
46 1re 1
47 le2sq2 normSAB0normSAB1normSAB1normSAB212
48 46 47 mpanr1 normSAB0normSABnormSAB1normSAB212
49 40 42 45 48 syl21anc SCHStatesACBCnormSAB212
50 sq1 12=1
51 49 50 breqtrdi SCHStatesACBCnormSAB21
52 51 adantrr SCHStatesACBCABnormSAB21
53 33 52 eqbrtrrd SCHStatesACBCABnormSA2+normSB21
54 8 22 readdcld SCHStatesACBCnormSA2+normSB2
55 leadd2 normSA2+normSB21normSB2normSA2+normSB21normSB2+normSA2+normSB2normSB2+1
56 46 55 mp3an2 normSA2+normSB2normSB2normSA2+normSB21normSB2+normSA2+normSB2normSB2+1
57 54 14 56 syl2anc SCHStatesACBCnormSA2+normSB21normSB2+normSA2+normSB2normSB2+1
58 57 adantrr SCHStatesACBCABnormSA2+normSB21normSB2+normSA2+normSB2normSB2+1
59 53 58 mpbid SCHStatesACBCABnormSB2+normSA2+normSB2normSB2+1
60 26 59 eqbrtrd SCHStatesACBCABnormSA2+1normSB2+1
61 leadd1 normSA2normSB21normSA2normSB2normSA2+1normSB2+1
62 46 61 mp3an3 normSA2normSB2normSA2normSB2normSA2+1normSB2+1
63 8 14 62 syl2anc SCHStatesACBCnormSA2normSB2normSA2+1normSB2+1
64 63 adantrr SCHStatesACBCABnormSA2normSB2normSA2+1normSB2+1
65 60 64 mpbird SCHStatesACBCABnormSA2normSB2
66 normge0 SA0normSA
67 4 66 syl SCHStatesAC0normSA
68 6 67 jca SCHStatesACnormSA0normSA
69 68 adantr SCHStatesACBCnormSA0normSA
70 normge0 SB0normSB
71 10 70 syl SCHStatesBC0normSB
72 12 71 jca SCHStatesBCnormSB0normSB
73 72 adantlr SCHStatesACBCnormSB0normSB
74 le2sq normSA0normSAnormSB0normSBnormSAnormSBnormSA2normSB2
75 69 73 74 syl2anc SCHStatesACBCnormSAnormSBnormSA2normSB2
76 75 adantrr SCHStatesACBCABnormSAnormSBnormSA2normSB2
77 65 76 mpbird SCHStatesACBCABnormSAnormSB