Metamath Proof Explorer


Theorem i1fima

Description: Any preimage of a simple function is measurable. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion i1fima Fdom1F-1Adomvol

Proof

Step Hyp Ref Expression
1 i1ff Fdom1F:
2 ffun F:FunF
3 inpreima FunFF-1AranF=F-1AF-1ranF
4 iunid yAranFy=AranF
5 4 imaeq2i F-1yAranFy=F-1AranF
6 imaiun F-1yAranFy=yAranFF-1y
7 5 6 eqtr3i F-1AranF=yAranFF-1y
8 cnvimass F-1AdomF
9 cnvimarndm F-1ranF=domF
10 8 9 sseqtrri F-1AF-1ranF
11 df-ss F-1AF-1ranFF-1AF-1ranF=F-1A
12 10 11 mpbi F-1AF-1ranF=F-1A
13 3 7 12 3eqtr3g FunFyAranFF-1y=F-1A
14 1 2 13 3syl Fdom1yAranFF-1y=F-1A
15 i1frn Fdom1ranFFin
16 inss2 AranFranF
17 ssfi ranFFinAranFranFAranFFin
18 15 16 17 sylancl Fdom1AranFFin
19 i1fmbf Fdom1FMblFn
20 19 adantr Fdom1yAranFFMblFn
21 1 adantr Fdom1yAranFF:
22 1 frnd Fdom1ranF
23 16 22 sstrid Fdom1AranF
24 23 sselda Fdom1yAranFy
25 mbfimasn FMblFnF:yF-1ydomvol
26 20 21 24 25 syl3anc Fdom1yAranFF-1ydomvol
27 26 ralrimiva Fdom1yAranFF-1ydomvol
28 finiunmbl AranFFinyAranFF-1ydomvolyAranFF-1ydomvol
29 18 27 28 syl2anc Fdom1yAranFF-1ydomvol
30 14 29 eqeltrrd Fdom1F-1Adomvol