Description: If a function is integrable, then the S.2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iblitg.1 | |
|
iblitg.2 | |
||
iblitg.3 | |
||
iblitg.4 | |
||
Assertion | iblitg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iblitg.1 | |
|
2 | iblitg.2 | |
|
3 | iblitg.3 | |
|
4 | iblitg.4 | |
|
5 | 1 | adantr | |
6 | 2 | adantlr | |
7 | iexpcyc | |
|
8 | 7 | oveq2d | |
9 | 8 | fveq2d | |
10 | 9 | ad2antlr | |
11 | 6 10 | eqtr4d | |
12 | 11 | ibllem | |
13 | 12 | mpteq2dv | |
14 | 5 13 | eqtrd | |
15 | 14 | fveq2d | |
16 | oveq2 | |
|
17 | 16 | oveq2d | |
18 | 17 | fveq2d | |
19 | 18 | breq2d | |
20 | 19 | anbi2d | |
21 | 20 18 | ifbieq1d | |
22 | 21 | mpteq2dv | |
23 | 22 | fveq2d | |
24 | 23 | eleq1d | |
25 | eqidd | |
|
26 | eqidd | |
|
27 | 25 26 4 | isibl2 | |
28 | 3 27 | mpbid | |
29 | 28 | simprd | |
30 | 29 | adantr | |
31 | 4nn | |
|
32 | zmodfz | |
|
33 | 31 32 | mpan2 | |
34 | 4m1e3 | |
|
35 | 34 | oveq2i | |
36 | 33 35 | eleqtrdi | |
37 | 36 | adantl | |
38 | 24 30 37 | rspcdva | |
39 | 15 38 | eqeltrd | |