Metamath Proof Explorer


Theorem iblitg

Description: If a function is integrable, then the S.2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses iblitg.1 φG=xifxA0TT0
iblitg.2 φxAT=BiK
iblitg.3 φxAB𝐿1
iblitg.4 φxABV
Assertion iblitg φK2G

Proof

Step Hyp Ref Expression
1 iblitg.1 φG=xifxA0TT0
2 iblitg.2 φxAT=BiK
3 iblitg.3 φxAB𝐿1
4 iblitg.4 φxABV
5 1 adantr φKG=xifxA0TT0
6 2 adantlr φKxAT=BiK
7 iexpcyc KiKmod4=iK
8 7 oveq2d KBiKmod4=BiK
9 8 fveq2d KBiKmod4=BiK
10 9 ad2antlr φKxABiKmod4=BiK
11 6 10 eqtr4d φKxAT=BiKmod4
12 11 ibllem φKifxA0TT0=ifxA0BiKmod4BiKmod40
13 12 mpteq2dv φKxifxA0TT0=xifxA0BiKmod4BiKmod40
14 5 13 eqtrd φKG=xifxA0BiKmod4BiKmod40
15 14 fveq2d φK2G=2xifxA0BiKmod4BiKmod40
16 oveq2 k=Kmod4ik=iKmod4
17 16 oveq2d k=Kmod4Bik=BiKmod4
18 17 fveq2d k=Kmod4Bik=BiKmod4
19 18 breq2d k=Kmod40Bik0BiKmod4
20 19 anbi2d k=Kmod4xA0BikxA0BiKmod4
21 20 18 ifbieq1d k=Kmod4ifxA0BikBik0=ifxA0BiKmod4BiKmod40
22 21 mpteq2dv k=Kmod4xifxA0BikBik0=xifxA0BiKmod4BiKmod40
23 22 fveq2d k=Kmod42xifxA0BikBik0=2xifxA0BiKmod4BiKmod40
24 23 eleq1d k=Kmod42xifxA0BikBik02xifxA0BiKmod4BiKmod40
25 eqidd φxifxA0BikBik0=xifxA0BikBik0
26 eqidd φxABik=Bik
27 25 26 4 isibl2 φxAB𝐿1xABMblFnk032xifxA0BikBik0
28 3 27 mpbid φxABMblFnk032xifxA0BikBik0
29 28 simprd φk032xifxA0BikBik0
30 29 adantr φKk032xifxA0BikBik0
31 4nn 4
32 zmodfz K4Kmod4041
33 31 32 mpan2 KKmod4041
34 4m1e3 41=3
35 34 oveq2i 041=03
36 33 35 eleqtrdi KKmod403
37 36 adantl φKKmod403
38 24 30 37 rspcdva φK2xifxA0BiKmod4BiKmod40
39 15 38 eqeltrd φK2G