| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iblitg.1 |  | 
						
							| 2 |  | iblitg.2 |  | 
						
							| 3 |  | iblitg.3 |  | 
						
							| 4 |  | iblitg.4 |  | 
						
							| 5 | 1 | adantr |  | 
						
							| 6 | 2 | adantlr |  | 
						
							| 7 |  | iexpcyc |  | 
						
							| 8 | 7 | oveq2d |  | 
						
							| 9 | 8 | fveq2d |  | 
						
							| 10 | 9 | ad2antlr |  | 
						
							| 11 | 6 10 | eqtr4d |  | 
						
							| 12 | 11 | ibllem |  | 
						
							| 13 | 12 | mpteq2dv |  | 
						
							| 14 | 5 13 | eqtrd |  | 
						
							| 15 | 14 | fveq2d |  | 
						
							| 16 |  | oveq2 |  | 
						
							| 17 | 16 | oveq2d |  | 
						
							| 18 | 17 | fveq2d |  | 
						
							| 19 | 18 | breq2d |  | 
						
							| 20 | 19 | anbi2d |  | 
						
							| 21 | 20 18 | ifbieq1d |  | 
						
							| 22 | 21 | mpteq2dv |  | 
						
							| 23 | 22 | fveq2d |  | 
						
							| 24 | 23 | eleq1d |  | 
						
							| 25 |  | eqidd |  | 
						
							| 26 |  | eqidd |  | 
						
							| 27 | 25 26 4 | isibl2 |  | 
						
							| 28 | 3 27 | mpbid |  | 
						
							| 29 | 28 | simprd |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 |  | 4nn |  | 
						
							| 32 |  | zmodfz |  | 
						
							| 33 | 31 32 | mpan2 |  | 
						
							| 34 |  | 4m1e3 |  | 
						
							| 35 | 34 | oveq2i |  | 
						
							| 36 | 33 35 | eleqtrdi |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 | 24 30 37 | rspcdva |  | 
						
							| 39 | 15 38 | eqeltrd |  |