| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccpartgtprec.m |
|
| 2 |
|
iccpartgtprec.p |
|
| 3 |
|
0zd |
|
| 4 |
|
nnz |
|
| 5 |
|
nngt0 |
|
| 6 |
3 4 5
|
3jca |
|
| 7 |
1 6
|
syl |
|
| 8 |
|
fzopred |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
0p1e1 |
|
| 11 |
10
|
a1i |
|
| 12 |
11
|
oveq1d |
|
| 13 |
12
|
uneq2d |
|
| 14 |
9 13
|
eqtrd |
|
| 15 |
14
|
eleq2d |
|
| 16 |
|
elun |
|
| 17 |
|
elsni |
|
| 18 |
|
fveq2 |
|
| 19 |
18
|
adantr |
|
| 20 |
1 2
|
iccpartlt |
|
| 21 |
20
|
adantl |
|
| 22 |
19 21
|
eqbrtrd |
|
| 23 |
22
|
ex |
|
| 24 |
17 23
|
syl |
|
| 25 |
|
fveq2 |
|
| 26 |
25
|
breq1d |
|
| 27 |
26
|
rspccv |
|
| 28 |
1 2
|
iccpartiltu |
|
| 29 |
27 28
|
syl11 |
|
| 30 |
24 29
|
jaoi |
|
| 31 |
30
|
com12 |
|
| 32 |
16 31
|
biimtrid |
|
| 33 |
15 32
|
sylbid |
|
| 34 |
33
|
ralrimiv |
|