Metamath Proof Explorer


Theorem iccpartltu

Description: If there is a partition, then all intermediate points and the lower bound are strictly less than the upper bound. (Contributed by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φM
iccpartgtprec.p φPRePartM
Assertion iccpartltu φi0..^MPi<PM

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φM
2 iccpartgtprec.p φPRePartM
3 0zd M0
4 nnz MM
5 nngt0 M0<M
6 3 4 5 3jca M0M0<M
7 1 6 syl φ0M0<M
8 fzopred 0M0<M0..^M=00+1..^M
9 7 8 syl φ0..^M=00+1..^M
10 0p1e1 0+1=1
11 10 a1i φ0+1=1
12 11 oveq1d φ0+1..^M=1..^M
13 12 uneq2d φ00+1..^M=01..^M
14 9 13 eqtrd φ0..^M=01..^M
15 14 eleq2d φi0..^Mi01..^M
16 elun i01..^Mi0i1..^M
17 elsni i0i=0
18 fveq2 i=0Pi=P0
19 18 adantr i=0φPi=P0
20 1 2 iccpartlt φP0<PM
21 20 adantl i=0φP0<PM
22 19 21 eqbrtrd i=0φPi<PM
23 22 ex i=0φPi<PM
24 17 23 syl i0φPi<PM
25 fveq2 k=iPk=Pi
26 25 breq1d k=iPk<PMPi<PM
27 26 rspccv k1..^MPk<PMi1..^MPi<PM
28 1 2 iccpartiltu φk1..^MPk<PM
29 27 28 syl11 i1..^MφPi<PM
30 24 29 jaoi i0i1..^MφPi<PM
31 30 com12 φi0i1..^MPi<PM
32 16 31 biimtrid φi01..^MPi<PM
33 15 32 sylbid φi0..^MPi<PM
34 33 ralrimiv φi0..^MPi<PM