Description: Split a closed interval into the union of two closed intervals. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | iccsplit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr1 | |
|
2 | simplr2 | |
|
3 | simpr1 | |
|
4 | iccssre | |
|
5 | 4 | sseld | |
6 | 5 | 3impia | |
7 | 6 | adantr | |
8 | ltle | |
|
9 | 3 7 8 | syl2anc | |
10 | 9 | imp | |
11 | 1 2 10 | 3jca | |
12 | 11 | orcd | |
13 | simplr1 | |
|
14 | simpr | |
|
15 | simplr3 | |
|
16 | 13 14 15 | 3jca | |
17 | 16 | olcd | |
18 | 12 17 3 7 | ltlecasei | |
19 | 18 | ex | |
20 | simp1 | |
|
21 | 20 | a1i | |
22 | simp2 | |
|
23 | 22 | a1i | |
24 | elicc2 | |
|
25 | 20 | 3ad2ant3 | |
26 | simp1 | |
|
27 | 26 | 3ad2ant2 | |
28 | simp1r | |
|
29 | simp3 | |
|
30 | 29 | 3ad2ant3 | |
31 | simp3 | |
|
32 | 31 | 3ad2ant2 | |
33 | 25 27 28 30 32 | letrd | |
34 | 33 | 3exp | |
35 | 24 34 | sylbid | |
36 | 35 | 3impia | |
37 | 21 23 36 | 3jcad | |
38 | simp1 | |
|
39 | 38 | a1i | |
40 | simp1l | |
|
41 | 26 | 3ad2ant2 | |
42 | 38 | 3ad2ant3 | |
43 | simp2 | |
|
44 | 43 | 3ad2ant2 | |
45 | simp2 | |
|
46 | 45 | 3ad2ant3 | |
47 | 40 41 42 44 46 | letrd | |
48 | 47 | 3exp | |
49 | 24 48 | sylbid | |
50 | 49 | 3impia | |
51 | simp3 | |
|
52 | 51 | a1i | |
53 | 39 50 52 | 3jcad | |
54 | 37 53 | jaod | |
55 | 19 54 | impbid | |
56 | elicc2 | |
|
57 | 56 | 3adant3 | |
58 | 5 | imdistani | |
59 | 58 | 3impa | |
60 | elicc2 | |
|
61 | 60 | adantlr | |
62 | elicc2 | |
|
63 | 62 | ancoms | |
64 | 63 | adantll | |
65 | 61 64 | orbi12d | |
66 | 59 65 | syl | |
67 | 55 57 66 | 3bitr4d | |
68 | elun | |
|
69 | 67 68 | bitr4di | |
70 | 69 | eqrdv | |