Metamath Proof Explorer


Theorem iccsplit

Description: Split a closed interval into the union of two closed intervals. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion iccsplit ABCABAB=ACCB

Proof

Step Hyp Ref Expression
1 simplr1 ABCABxAxxBx<Cx
2 simplr2 ABCABxAxxBx<CAx
3 simpr1 ABCABxAxxBx
4 iccssre ABAB
5 4 sseld ABCABC
6 5 3impia ABCABC
7 6 adantr ABCABxAxxBC
8 ltle xCx<CxC
9 3 7 8 syl2anc ABCABxAxxBx<CxC
10 9 imp ABCABxAxxBx<CxC
11 1 2 10 3jca ABCABxAxxBx<CxAxxC
12 11 orcd ABCABxAxxBx<CxAxxCxCxxB
13 simplr1 ABCABxAxxBCxx
14 simpr ABCABxAxxBCxCx
15 simplr3 ABCABxAxxBCxxB
16 13 14 15 3jca ABCABxAxxBCxxCxxB
17 16 olcd ABCABxAxxBCxxAxxCxCxxB
18 12 17 3 7 ltlecasei ABCABxAxxBxAxxCxCxxB
19 18 ex ABCABxAxxBxAxxCxCxxB
20 simp1 xAxxCx
21 20 a1i ABCABxAxxCx
22 simp2 xAxxCAx
23 22 a1i ABCABxAxxCAx
24 elicc2 ABCABCACCB
25 20 3ad2ant3 ABCACCBxAxxCx
26 simp1 CACCBC
27 26 3ad2ant2 ABCACCBxAxxCC
28 simp1r ABCACCBxAxxCB
29 simp3 xAxxCxC
30 29 3ad2ant3 ABCACCBxAxxCxC
31 simp3 CACCBCB
32 31 3ad2ant2 ABCACCBxAxxCCB
33 25 27 28 30 32 letrd ABCACCBxAxxCxB
34 33 3exp ABCACCBxAxxCxB
35 24 34 sylbid ABCABxAxxCxB
36 35 3impia ABCABxAxxCxB
37 21 23 36 3jcad ABCABxAxxCxAxxB
38 simp1 xCxxBx
39 38 a1i ABCABxCxxBx
40 simp1l ABCACCBxCxxBA
41 26 3ad2ant2 ABCACCBxCxxBC
42 38 3ad2ant3 ABCACCBxCxxBx
43 simp2 CACCBAC
44 43 3ad2ant2 ABCACCBxCxxBAC
45 simp2 xCxxBCx
46 45 3ad2ant3 ABCACCBxCxxBCx
47 40 41 42 44 46 letrd ABCACCBxCxxBAx
48 47 3exp ABCACCBxCxxBAx
49 24 48 sylbid ABCABxCxxBAx
50 49 3impia ABCABxCxxBAx
51 simp3 xCxxBxB
52 51 a1i ABCABxCxxBxB
53 39 50 52 3jcad ABCABxCxxBxAxxB
54 37 53 jaod ABCABxAxxCxCxxBxAxxB
55 19 54 impbid ABCABxAxxBxAxxCxCxxB
56 elicc2 ABxABxAxxB
57 56 3adant3 ABCABxABxAxxB
58 5 imdistani ABCABABC
59 58 3impa ABCABABC
60 elicc2 ACxACxAxxC
61 60 adantlr ABCxACxAxxC
62 elicc2 CBxCBxCxxB
63 62 ancoms BCxCBxCxxB
64 63 adantll ABCxCBxCxxB
65 61 64 orbi12d ABCxACxCBxAxxCxCxxB
66 59 65 syl ABCABxACxCBxAxxCxCxxB
67 55 57 66 3bitr4d ABCABxABxACxCB
68 elun xACCBxACxCB
69 67 68 bitr4di ABCABxABxACCB
70 69 eqrdv ABCABAB=ACCB