Metamath Proof Explorer


Theorem iccvonmbllem

Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iccvonmbllem.x φ X Fin
iccvonmbllem.s S = dom voln X
iccvonmbllem.a φ A : X
iccvonmbllem.b φ B : X
iccvonmbllem.c C = n i X A i 1 n
iccvonmbllem.d D = n i X B i + 1 n
Assertion iccvonmbllem φ i X A i B i S

Proof

Step Hyp Ref Expression
1 iccvonmbllem.x φ X Fin
2 iccvonmbllem.s S = dom voln X
3 iccvonmbllem.a φ A : X
4 iccvonmbllem.b φ B : X
5 iccvonmbllem.c C = n i X A i 1 n
6 iccvonmbllem.d D = n i X B i + 1 n
7 5 a1i φ C = n i X A i 1 n
8 1 adantr φ n X Fin
9 8 mptexd φ n i X A i 1 n V
10 7 9 fvmpt2d φ n C n = i X A i 1 n
11 3 ffvelrnda φ i X A i
12 11 adantlr φ n i X A i
13 nnrecre n 1 n
14 13 ad2antlr φ n i X 1 n
15 12 14 resubcld φ n i X A i 1 n
16 10 15 fvmpt2d φ n i X C n i = A i 1 n
17 16 an32s φ i X n C n i = A i 1 n
18 6 a1i φ D = n i X B i + 1 n
19 8 mptexd φ n i X B i + 1 n V
20 18 19 fvmpt2d φ n D n = i X B i + 1 n
21 4 ffvelrnda φ i X B i
22 21 adantlr φ n i X B i
23 22 14 readdcld φ n i X B i + 1 n
24 20 23 fvmpt2d φ n i X D n i = B i + 1 n
25 24 an32s φ i X n D n i = B i + 1 n
26 17 25 oveq12d φ i X n C n i D n i = A i 1 n B i + 1 n
27 26 iineq2dv φ i X n C n i D n i = n A i 1 n B i + 1 n
28 11 21 iooiinicc φ i X n A i 1 n B i + 1 n = A i B i
29 27 28 eqtrd φ i X n C n i D n i = A i B i
30 29 ixpeq2dva φ i X n C n i D n i = i X A i B i
31 30 eqcomd φ i X A i B i = i X n C n i D n i
32 eqidd φ i X A i B i = i X A i B i
33 nnn0
34 33 a1i φ
35 ixpiin i X n C n i D n i = n i X C n i D n i
36 34 35 syl φ i X n C n i D n i = n i X C n i D n i
37 31 32 36 3eqtr3d φ i X A i B i = n i X C n i D n i
38 1 2 dmovnsal φ S SAlg
39 nnct ω
40 39 a1i φ ω
41 15 fmpttd φ n i X A i 1 n : X
42 ressxr *
43 42 a1i φ n *
44 41 43 fssd φ n i X A i 1 n : X *
45 10 feq1d φ n C n : X * i X A i 1 n : X *
46 44 45 mpbird φ n C n : X *
47 23 fmpttd φ n i X B i + 1 n : X
48 47 43 fssd φ n i X B i + 1 n : X *
49 20 feq1d φ n D n : X * i X B i + 1 n : X *
50 48 49 mpbird φ n D n : X *
51 8 2 46 50 ioovonmbl φ n i X C n i D n i S
52 38 40 34 51 saliincl φ n i X C n i D n i S
53 37 52 eqeltrd φ i X A i B i S