Metamath Proof Explorer


Theorem ico0

Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014)

Ref Expression
Assertion ico0 A*B*AB=BA

Proof

Step Hyp Ref Expression
1 icoval A*B*AB=x*|Axx<B
2 1 eqeq1d A*B*AB=x*|Axx<B=
3 df-ne x*|Axx<B¬x*|Axx<B=
4 rabn0 x*|Axx<Bx*Axx<B
5 3 4 bitr3i ¬x*|Axx<B=x*Axx<B
6 xrlelttr A*x*B*Axx<BA<B
7 6 3com23 A*B*x*Axx<BA<B
8 7 3expa A*B*x*Axx<BA<B
9 8 rexlimdva A*B*x*Axx<BA<B
10 qbtwnxr A*B*A<BxA<xx<B
11 qre xx
12 11 rexrd xx*
13 12 a1i x*A*B*A<Bxx*
14 simpr1 x*A*B*A<BA*
15 simpl x*A*B*A<Bx*
16 xrltle A*x*A<xAx
17 14 15 16 syl2anc x*A*B*A<BA<xAx
18 17 anim1d x*A*B*A<BA<xx<BAxx<B
19 13 18 anim12d x*A*B*A<BxA<xx<Bx*Axx<B
20 19 ex x*A*B*A<BxA<xx<Bx*Axx<B
21 12 20 syl xA*B*A<BxA<xx<Bx*Axx<B
22 21 adantr xA<xx<BA*B*A<BxA<xx<Bx*Axx<B
23 22 pm2.43b A*B*A<BxA<xx<Bx*Axx<B
24 23 reximdv2 A*B*A<BxA<xx<Bx*Axx<B
25 10 24 mpd A*B*A<Bx*Axx<B
26 25 3expia A*B*A<Bx*Axx<B
27 9 26 impbid A*B*x*Axx<BA<B
28 5 27 bitrid A*B*¬x*|Axx<B=A<B
29 xrltnle A*B*A<B¬BA
30 28 29 bitrd A*B*¬x*|Axx<B=¬BA
31 30 con4bid A*B*x*|Axx<B=BA
32 2 31 bitrd A*B*AB=BA