Metamath Proof Explorer


Theorem icoreresf

Description: Closed-below, open-above intervals of reals map to subsets of reals. (Contributed by ML, 25-Jul-2020)

Ref Expression
Assertion icoreresf .2:2𝒫

Proof

Step Hyp Ref Expression
1 rexpssxrxp 2*×*
2 df-ico .=x*,y*z*|xzz<y
3 2 ixxf .:*×*𝒫*
4 ffn .:*×*𝒫*.Fn*×*
5 fnssresb .Fn*×*.2Fn22*×*
6 3 4 5 mp2b .2Fn22*×*
7 1 6 mpbir .2Fn2
8 eqid .2=.2
9 8 icorempo .2=x,yz|xzz<y
10 9 rneqi ran.2=ranx,yz|xzz<y
11 ssrab2 z|xzz<y
12 reex V
13 12 elpw2 z|xzz<y𝒫z|xzz<y
14 11 13 mpbir z|xzz<y𝒫
15 14 rgen2w xyz|xzz<y𝒫
16 eqid x,yz|xzz<y=x,yz|xzz<y
17 16 rnmpo ranx,yz|xzz<y=l|xyl=z|xzz<y
18 17 eqabri lranx,yz|xzz<yxyl=z|xzz<y
19 simpl xyz|xzz<y𝒫xyl=z|xzz<yxyz|xzz<y𝒫
20 simpr xyz|xzz<y𝒫xyl=z|xzz<yxyl=z|xzz<y
21 19 20 r19.29d2r xyz|xzz<y𝒫xyl=z|xzz<yxyz|xzz<y𝒫l=z|xzz<y
22 eleq1 l=z|xzz<yl𝒫z|xzz<y𝒫
23 22 biimparc z|xzz<y𝒫l=z|xzz<yl𝒫
24 23 a1i xyz|xzz<y𝒫l=z|xzz<yl𝒫
25 24 rexlimivv xyz|xzz<y𝒫l=z|xzz<yl𝒫
26 21 25 syl xyz|xzz<y𝒫xyl=z|xzz<yl𝒫
27 26 ex xyz|xzz<y𝒫xyl=z|xzz<yl𝒫
28 18 27 biimtrid xyz|xzz<y𝒫lranx,yz|xzz<yl𝒫
29 28 ssrdv xyz|xzz<y𝒫ranx,yz|xzz<y𝒫
30 15 29 ax-mp ranx,yz|xzz<y𝒫
31 10 30 eqsstri ran.2𝒫
32 df-f .2:2𝒫.2Fn2ran.2𝒫
33 7 31 32 mpbir2an .2:2𝒫