Metamath Proof Explorer


Theorem infxrge0gelb

Description: The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020) (Revised by AV, 4-Oct-2020)

Ref Expression
Hypotheses infxrge0glb.a φ A 0 +∞
infxrge0glb.b φ B 0 +∞
Assertion infxrge0gelb φ B sup A 0 +∞ < x A B x

Proof

Step Hyp Ref Expression
1 infxrge0glb.a φ A 0 +∞
2 infxrge0glb.b φ B 0 +∞
3 1 2 infxrge0glb φ sup A 0 +∞ < < B x A x < B
4 3 notbid φ ¬ sup A 0 +∞ < < B ¬ x A x < B
5 iccssxr 0 +∞ *
6 5 2 sselid φ B *
7 xrltso < Or *
8 soss 0 +∞ * < Or * < Or 0 +∞
9 5 7 8 mp2 < Or 0 +∞
10 9 a1i φ < Or 0 +∞
11 xrge0infss A 0 +∞ x 0 +∞ y A ¬ y < x y 0 +∞ x < y z A z < y
12 1 11 syl φ x 0 +∞ y A ¬ y < x y 0 +∞ x < y z A z < y
13 10 12 infcl φ sup A 0 +∞ < 0 +∞
14 5 13 sselid φ sup A 0 +∞ < *
15 6 14 xrlenltd φ B sup A 0 +∞ < ¬ sup A 0 +∞ < < B
16 6 adantr φ x A B *
17 1 5 sstrdi φ A *
18 17 sselda φ x A x *
19 16 18 xrlenltd φ x A B x ¬ x < B
20 19 ralbidva φ x A B x x A ¬ x < B
21 ralnex x A ¬ x < B ¬ x A x < B
22 20 21 bitrdi φ x A B x ¬ x A x < B
23 4 15 22 3bitr4d φ B sup A 0 +∞ < x A B x