| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
|
intex |
|
| 3 |
1 2
|
sylib |
|
| 4 |
|
dfss3 |
|
| 5 |
|
grutr |
|
| 6 |
5
|
ralimi |
|
| 7 |
4 6
|
sylbi |
|
| 8 |
|
trint |
|
| 9 |
7 8
|
syl |
|
| 10 |
9
|
adantr |
|
| 11 |
|
grupw |
|
| 12 |
11
|
ex |
|
| 13 |
12
|
ral2imi |
|
| 14 |
|
vex |
|
| 15 |
14
|
elint2 |
|
| 16 |
|
vpwex |
|
| 17 |
16
|
elint2 |
|
| 18 |
13 15 17
|
3imtr4g |
|
| 19 |
18
|
imp |
|
| 20 |
19
|
adantlr |
|
| 21 |
|
r19.26 |
|
| 22 |
|
grupr |
|
| 23 |
22
|
3expia |
|
| 24 |
23
|
ral2imi |
|
| 25 |
21 24
|
sylbir |
|
| 26 |
|
vex |
|
| 27 |
26
|
elint2 |
|
| 28 |
|
prex |
|
| 29 |
28
|
elint2 |
|
| 30 |
25 27 29
|
3imtr4g |
|
| 31 |
15 30
|
sylan2b |
|
| 32 |
31
|
ralrimiv |
|
| 33 |
32
|
adantlr |
|
| 34 |
|
elmapg |
|
| 35 |
34
|
elvd |
|
| 36 |
2 35
|
sylbi |
|
| 37 |
36
|
ad2antlr |
|
| 38 |
|
intss1 |
|
| 39 |
|
fss |
|
| 40 |
38 39
|
sylan2 |
|
| 41 |
40
|
ralrimiva |
|
| 42 |
|
gruurn |
|
| 43 |
42
|
3expia |
|
| 44 |
43
|
ral2imi |
|
| 45 |
21 44
|
sylbir |
|
| 46 |
15 45
|
sylan2b |
|
| 47 |
41 46
|
syl5 |
|
| 48 |
26
|
rnex |
|
| 49 |
48
|
uniex |
|
| 50 |
49
|
elint2 |
|
| 51 |
47 50
|
imbitrrdi |
|
| 52 |
51
|
adantlr |
|
| 53 |
37 52
|
sylbid |
|
| 54 |
53
|
ralrimiv |
|
| 55 |
20 33 54
|
3jca |
|
| 56 |
55
|
ralrimiva |
|
| 57 |
4 56
|
sylanb |
|
| 58 |
|
elgrug |
|
| 59 |
58
|
biimpar |
|
| 60 |
3 10 57 59
|
syl12anc |
|