Metamath Proof Explorer


Theorem invrvald

Description: If a matrix multiplied with a given matrix (from the left as well as from the right) results in the identity matrix, this matrix is the inverse (matrix) of the given matrix. (Contributed by Stefan O'Rear, 17-Jul-2018)

Ref Expression
Hypotheses invrvald.b B = Base R
invrvald.t · ˙ = R
invrvald.o 1 ˙ = 1 R
invrvald.u U = Unit R
invrvald.i I = inv r R
invrvald.r φ R Ring
invrvald.x φ X B
invrvald.y φ Y B
invrvald.xy φ X · ˙ Y = 1 ˙
invrvald.yx φ Y · ˙ X = 1 ˙
Assertion invrvald φ X U I X = Y

Proof

Step Hyp Ref Expression
1 invrvald.b B = Base R
2 invrvald.t · ˙ = R
3 invrvald.o 1 ˙ = 1 R
4 invrvald.u U = Unit R
5 invrvald.i I = inv r R
6 invrvald.r φ R Ring
7 invrvald.x φ X B
8 invrvald.y φ Y B
9 invrvald.xy φ X · ˙ Y = 1 ˙
10 invrvald.yx φ Y · ˙ X = 1 ˙
11 eqid r R = r R
12 1 11 2 dvdsrmul X B Y B X r R Y · ˙ X
13 7 8 12 syl2anc φ X r R Y · ˙ X
14 13 10 breqtrd φ X r R 1 ˙
15 eqid opp r R = opp r R
16 15 1 opprbas B = Base opp r R
17 eqid r opp r R = r opp r R
18 eqid opp r R = opp r R
19 16 17 18 dvdsrmul X B Y B X r opp r R Y opp r R X
20 7 8 19 syl2anc φ X r opp r R Y opp r R X
21 1 2 15 18 opprmul Y opp r R X = X · ˙ Y
22 21 9 eqtrid φ Y opp r R X = 1 ˙
23 20 22 breqtrd φ X r opp r R 1 ˙
24 4 3 11 15 17 isunit X U X r R 1 ˙ X r opp r R 1 ˙
25 14 23 24 sylanbrc φ X U
26 eqid mulGrp R 𝑠 U = mulGrp R 𝑠 U
27 4 26 3 unitgrpid R Ring 1 ˙ = 0 mulGrp R 𝑠 U
28 6 27 syl φ 1 ˙ = 0 mulGrp R 𝑠 U
29 9 28 eqtrd φ X · ˙ Y = 0 mulGrp R 𝑠 U
30 4 26 unitgrp R Ring mulGrp R 𝑠 U Grp
31 6 30 syl φ mulGrp R 𝑠 U Grp
32 1 11 2 dvdsrmul Y B X B Y r R X · ˙ Y
33 8 7 32 syl2anc φ Y r R X · ˙ Y
34 33 9 breqtrd φ Y r R 1 ˙
35 16 17 18 dvdsrmul Y B X B Y r opp r R X opp r R Y
36 8 7 35 syl2anc φ Y r opp r R X opp r R Y
37 1 2 15 18 opprmul X opp r R Y = Y · ˙ X
38 37 10 eqtrid φ X opp r R Y = 1 ˙
39 36 38 breqtrd φ Y r opp r R 1 ˙
40 4 3 11 15 17 isunit Y U Y r R 1 ˙ Y r opp r R 1 ˙
41 34 39 40 sylanbrc φ Y U
42 4 26 unitgrpbas U = Base mulGrp R 𝑠 U
43 4 fvexi U V
44 eqid mulGrp R = mulGrp R
45 44 2 mgpplusg · ˙ = + mulGrp R
46 26 45 ressplusg U V · ˙ = + mulGrp R 𝑠 U
47 43 46 ax-mp · ˙ = + mulGrp R 𝑠 U
48 eqid 0 mulGrp R 𝑠 U = 0 mulGrp R 𝑠 U
49 4 26 5 invrfval I = inv g mulGrp R 𝑠 U
50 42 47 48 49 grpinvid1 mulGrp R 𝑠 U Grp X U Y U I X = Y X · ˙ Y = 0 mulGrp R 𝑠 U
51 31 25 41 50 syl3anc φ I X = Y X · ˙ Y = 0 mulGrp R 𝑠 U
52 29 51 mpbird φ I X = Y
53 25 52 jca φ X U I X = Y