Metamath Proof Explorer


Theorem iooabslt

Description: An upper bound for the distance from the center of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iooabslt.1 φA
iooabslt.2 φB
iooabslt.3 φCABA+B
Assertion iooabslt φAC<B

Proof

Step Hyp Ref Expression
1 iooabslt.1 φA
2 iooabslt.2 φB
3 iooabslt.3 φCABA+B
4 1 recnd φA
5 elioore CABA+BC
6 3 5 syl φC
7 6 recnd φC
8 eqid abs=abs
9 8 cnmetdval ACAabsC=AC
10 4 7 9 syl2anc φAabsC=AC
11 eqid abs2=abs2
12 11 bl2ioo ABAballabs2B=ABA+B
13 1 2 12 syl2anc φAballabs2B=ABA+B
14 3 13 eleqtrrd φCAballabs2B
15 cnxmet abs∞Met
16 15 a1i φabs∞Met
17 4 1 elind φA
18 2 rexrd φB*
19 11 blres abs∞MetAB*Aballabs2B=AballabsB
20 16 17 18 19 syl3anc φAballabs2B=AballabsB
21 14 20 eleqtrd φCAballabsB
22 elin CAballabsBCAballabsBC
23 21 22 sylib φCAballabsBC
24 23 simpld φCAballabsB
25 elbl abs∞MetAB*CAballabsBCAabsC<B
26 16 4 18 25 syl3anc φCAballabsBCAabsC<B
27 24 26 mpbid φCAabsC<B
28 27 simprd φAabsC<B
29 10 28 eqbrtrrd φAC<B