Metamath Proof Explorer


Theorem ipasslem10

Description: Lemma for ipassi . Show the inner product associative law for the imaginary number _i . (Contributed by NM, 24-Aug-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X=BaseSetU
ip1i.2 G=+vU
ip1i.4 S=𝑠OLDU
ip1i.7 P=𝑖OLDU
ip1i.9 UCPreHilOLD
ipasslem10.a AX
ipasslem10.b BX
ipasslem10.6 N=normCVU
Assertion ipasslem10 iSAPB=iAPB

Proof

Step Hyp Ref Expression
1 ip1i.1 X=BaseSetU
2 ip1i.2 G=+vU
3 ip1i.4 S=𝑠OLDU
4 ip1i.7 P=𝑖OLDU
5 ip1i.9 UCPreHilOLD
6 ipasslem10.a AX
7 ipasslem10.b BX
8 ipasslem10.6 N=normCVU
9 5 phnvi UNrmCVec
10 ax-icn i
11 1 3 nvscl UNrmCVeciAXiSAX
12 9 10 6 11 mp3an iSAX
13 1 2 3 8 4 4ipval2 UNrmCVecBXiSAX4BPiSA=NBGiSA2-NBG-1SiSA2+iNBGiSiSA2NBGiSiSA2
14 9 7 12 13 mp3an 4BPiSA=NBGiSA2-NBG-1SiSA2+iNBGiSiSA2NBGiSiSA2
15 4cn 4
16 negicn i
17 1 4 dipcl UNrmCVecBXAXBPA
18 9 7 6 17 mp3an BPA
19 15 16 18 mul12i 4iBPA=i4BPA
20 1 2 nvgcl UNrmCVecBXiSAXBGiSAX
21 9 7 12 20 mp3an BGiSAX
22 1 8 9 21 nvcli NBGiSA
23 22 recni NBGiSA
24 23 sqcli NBGiSA2
25 neg1cn 1
26 1 3 nvscl UNrmCVec1iSAX-1SiSAX
27 9 25 12 26 mp3an -1SiSAX
28 1 2 nvgcl UNrmCVecBX-1SiSAXBG-1SiSAX
29 9 7 27 28 mp3an BG-1SiSAX
30 1 8 9 29 nvcli NBG-1SiSA
31 30 recni NBG-1SiSA
32 31 sqcli NBG-1SiSA2
33 24 32 subcli NBGiSA2NBG-1SiSA2
34 1 3 nvscl UNrmCVeciiSAXiSiSAX
35 9 10 12 34 mp3an iSiSAX
36 1 2 nvgcl UNrmCVecBXiSiSAXBGiSiSAX
37 9 7 35 36 mp3an BGiSiSAX
38 1 8 9 37 nvcli NBGiSiSA
39 38 recni NBGiSiSA
40 39 sqcli NBGiSiSA2
41 1 3 nvscl UNrmCVeciiSAXiSiSAX
42 9 16 12 41 mp3an iSiSAX
43 1 2 nvgcl UNrmCVecBXiSiSAXBGiSiSAX
44 9 7 42 43 mp3an BGiSiSAX
45 1 8 9 44 nvcli NBGiSiSA
46 45 recni NBGiSiSA
47 46 sqcli NBGiSiSA2
48 40 47 subcli NBGiSiSA2NBGiSiSA2
49 10 48 mulcli iNBGiSiSA2NBGiSiSA2
50 33 49 addcomi NBGiSA2-NBG-1SiSA2+iNBGiSiSA2NBGiSiSA2=iNBGiSiSA2NBGiSiSA2+NBGiSA2-NBG-1SiSA2
51 1 2 nvgcl UNrmCVecBXAXBGAX
52 9 7 6 51 mp3an BGAX
53 1 8 9 52 nvcli NBGA
54 53 recni NBGA
55 54 sqcli NBGA2
56 1 3 nvscl UNrmCVec1AX-1SAX
57 9 25 6 56 mp3an -1SAX
58 1 2 nvgcl UNrmCVecBX-1SAXBG-1SAX
59 9 7 57 58 mp3an BG-1SAX
60 1 8 9 59 nvcli NBG-1SA
61 60 recni NBG-1SA
62 61 sqcli NBG-1SA2
63 55 62 subcli NBGA2NBG-1SA2
64 1 3 nvscl UNrmCVeciAXiSAX
65 9 16 6 64 mp3an iSAX
66 1 2 nvgcl UNrmCVecBXiSAXBGiSAX
67 9 7 65 66 mp3an BGiSAX
68 1 8 9 67 nvcli NBGiSA
69 68 recni NBGiSA
70 69 sqcli NBGiSA2
71 24 70 subcli NBGiSA2NBGiSA2
72 10 71 mulcli iNBGiSA2NBGiSA2
73 16 63 72 adddii iNBGA2-NBG-1SA2+iNBGiSA2NBGiSA2=iNBGA2NBG-1SA2+iiNBGiSA2NBGiSA2
74 10 10 6 3pm3.2i iiAX
75 1 3 nvsass UNrmCVeciiAXiiSA=iSiSA
76 9 74 75 mp2an iiSA=iSiSA
77 ixi ii=1
78 77 oveq1i iiSA=-1SA
79 76 78 eqtr3i iSiSA=-1SA
80 79 oveq2i BGiSiSA=BG-1SA
81 80 fveq2i NBGiSiSA=NBG-1SA
82 81 oveq1i NBGiSiSA2=NBG-1SA2
83 10 10 mulneg1i ii=ii
84 77 negeqi ii=-1
85 negneg1e1 -1=1
86 83 84 85 3eqtri ii=1
87 86 oveq1i iiSA=1SA
88 16 10 6 3pm3.2i iiAX
89 1 3 nvsass UNrmCVeciiAXiiSA=iSiSA
90 9 88 89 mp2an iiSA=iSiSA
91 1 3 nvsid UNrmCVecAX1SA=A
92 9 6 91 mp2an 1SA=A
93 87 90 92 3eqtr3i iSiSA=A
94 93 oveq2i BGiSiSA=BGA
95 94 fveq2i NBGiSiSA=NBGA
96 95 oveq1i NBGiSiSA2=NBGA2
97 82 96 oveq12i NBGiSiSA2NBGiSiSA2=NBG-1SA2NBGA2
98 97 oveq2i iNBGiSiSA2NBGiSiSA2=iNBG-1SA2NBGA2
99 63 mulm1i -1NBGA2NBG-1SA2=NBGA2NBG-1SA2
100 55 62 negsubdi2i NBGA2NBG-1SA2=NBG-1SA2NBGA2
101 99 100 eqtr2i NBG-1SA2NBGA2=-1NBGA2NBG-1SA2
102 101 oveq2i iNBG-1SA2NBGA2=i-1NBGA2NBG-1SA2
103 10 25 63 mulassi i-1NBGA2NBG-1SA2=i-1NBGA2NBG-1SA2
104 102 103 eqtr4i iNBG-1SA2NBGA2=i-1NBGA2NBG-1SA2
105 10 mulm1i -1i=i
106 25 10 105 mulcomli i-1=i
107 106 oveq1i i-1NBGA2NBG-1SA2=iNBGA2NBG-1SA2
108 98 104 107 3eqtri iNBGiSiSA2NBGiSiSA2=iNBGA2NBG-1SA2
109 25 10 6 3pm3.2i 1iAX
110 1 3 nvsass UNrmCVec1iAX-1iSA=-1SiSA
111 9 109 110 mp2an -1iSA=-1SiSA
112 105 oveq1i -1iSA=iSA
113 111 112 eqtr3i -1SiSA=iSA
114 113 oveq2i BG-1SiSA=BGiSA
115 114 fveq2i NBG-1SiSA=NBGiSA
116 115 oveq1i NBG-1SiSA2=NBGiSA2
117 116 oveq2i NBGiSA2NBG-1SiSA2=NBGiSA2NBGiSA2
118 71 mullidi 1NBGiSA2NBGiSA2=NBGiSA2NBGiSA2
119 117 118 eqtr4i NBGiSA2NBG-1SiSA2=1NBGiSA2NBGiSA2
120 86 oveq1i iiNBGiSA2NBGiSA2=1NBGiSA2NBGiSA2
121 119 120 eqtr4i NBGiSA2NBG-1SiSA2=iiNBGiSA2NBGiSA2
122 16 10 71 mulassi iiNBGiSA2NBGiSA2=iiNBGiSA2NBGiSA2
123 121 122 eqtri NBGiSA2NBG-1SiSA2=iiNBGiSA2NBGiSA2
124 108 123 oveq12i iNBGiSiSA2NBGiSiSA2+NBGiSA2-NBG-1SiSA2=iNBGA2NBG-1SA2+iiNBGiSA2NBGiSA2
125 73 124 eqtr4i iNBGA2-NBG-1SA2+iNBGiSA2NBGiSA2=iNBGiSiSA2NBGiSiSA2+NBGiSA2-NBG-1SiSA2
126 50 125 eqtr4i NBGiSA2-NBG-1SiSA2+iNBGiSiSA2NBGiSiSA2=iNBGA2-NBG-1SA2+iNBGiSA2NBGiSA2
127 1 2 3 8 4 4ipval2 UNrmCVecBXAX4BPA=NBGA2-NBG-1SA2+iNBGiSA2NBGiSA2
128 9 7 6 127 mp3an 4BPA=NBGA2-NBG-1SA2+iNBGiSA2NBGiSA2
129 128 oveq2i i4BPA=iNBGA2-NBG-1SA2+iNBGiSA2NBGiSA2
130 126 129 eqtr4i NBGiSA2-NBG-1SiSA2+iNBGiSiSA2NBGiSiSA2=i4BPA
131 19 130 eqtr4i 4iBPA=NBGiSA2-NBG-1SiSA2+iNBGiSiSA2NBGiSiSA2
132 14 131 eqtr4i 4BPiSA=4iBPA
133 1 4 dipcl UNrmCVecBXiSAXBPiSA
134 9 7 12 133 mp3an BPiSA
135 16 18 mulcli iBPA
136 4ne0 40
137 134 135 15 136 mulcani 4BPiSA=4iBPABPiSA=iBPA
138 132 137 mpbi BPiSA=iBPA
139 138 fveq2i BPiSA=iBPA
140 1 4 dipcj UNrmCVecBXiSAXBPiSA=iSAPB
141 9 7 12 140 mp3an BPiSA=iSAPB
142 16 18 cjmuli iBPA=iBPA
143 25 10 cjmuli -1i=1i
144 105 fveq2i -1i=i
145 neg1rr 1
146 25 cjrebi 11=1
147 145 146 mpbi 1=1
148 cji i=i
149 147 148 oveq12i 1i=-1i
150 ax-1cn 1
151 150 10 mul2negi -1i=1i
152 10 mullidi 1i=i
153 149 151 152 3eqtri 1i=i
154 143 144 153 3eqtr3i i=i
155 1 4 dipcj UNrmCVecBXAXBPA=APB
156 9 7 6 155 mp3an BPA=APB
157 154 156 oveq12i iBPA=iAPB
158 142 157 eqtri iBPA=iAPB
159 139 141 158 3eqtr3i iSAPB=iAPB