Description: Lemma for ipassi . Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ip1i.1 | |
|
ip1i.2 | |
||
ip1i.4 | |
||
ip1i.7 | |
||
ip1i.9 | |
||
ipasslem11.a | |
||
ipasslem11.b | |
||
Assertion | ipasslem11 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip1i.1 | |
|
2 | ip1i.2 | |
|
3 | ip1i.4 | |
|
4 | ip1i.7 | |
|
5 | ip1i.9 | |
|
6 | ipasslem11.a | |
|
7 | ipasslem11.b | |
|
8 | cnre | |
|
9 | ax-icn | |
|
10 | recn | |
|
11 | mulcom | |
|
12 | 9 10 11 | sylancr | |
13 | 12 | adantl | |
14 | 13 | oveq2d | |
15 | 14 | eqeq2d | |
16 | recn | |
|
17 | 5 | phnvi | |
18 | 1 3 | nvscl | |
19 | 17 6 18 | mp3an13 | |
20 | 16 19 | syl | |
21 | mulcl | |
|
22 | 10 9 21 | sylancl | |
23 | 1 3 | nvscl | |
24 | 17 6 23 | mp3an13 | |
25 | 22 24 | syl | |
26 | 1 2 3 4 5 | ipdiri | |
27 | 7 26 | mp3an3 | |
28 | 20 25 27 | syl2an | |
29 | 1 2 3 4 5 6 7 | ipasslem9 | |
30 | 1 3 | nvscl | |
31 | 17 9 6 30 | mp3an | |
32 | 1 2 3 4 5 31 7 | ipasslem9 | |
33 | 1 3 | nvsass | |
34 | 17 33 | mpan | |
35 | 9 6 34 | mp3an23 | |
36 | 10 35 | syl | |
37 | 36 | oveq1d | |
38 | 1 4 | dipcl | |
39 | 17 6 7 38 | mp3an | |
40 | mulass | |
|
41 | 9 39 40 | mp3an23 | |
42 | 10 41 | syl | |
43 | eqid | |
|
44 | 1 2 3 4 5 6 7 43 | ipasslem10 | |
45 | 44 | oveq2i | |
46 | 42 45 | eqtr4di | |
47 | 32 37 46 | 3eqtr4d | |
48 | 29 47 | oveqan12d | |
49 | 28 48 | eqtrd | |
50 | 1 2 3 | nvdir | |
51 | 17 50 | mpan | |
52 | 6 51 | mp3an3 | |
53 | 16 22 52 | syl2an | |
54 | 53 | oveq1d | |
55 | adddir | |
|
56 | 39 55 | mp3an3 | |
57 | 16 22 56 | syl2an | |
58 | 49 54 57 | 3eqtr4d | |
59 | oveq1 | |
|
60 | 59 | oveq1d | |
61 | oveq1 | |
|
62 | 60 61 | eqeq12d | |
63 | 58 62 | syl5ibrcom | |
64 | 15 63 | sylbid | |
65 | 64 | rexlimivv | |
66 | 8 65 | syl | |