Metamath Proof Explorer


Theorem ipasslem11

Description: Lemma for ipassi . Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X=BaseSetU
ip1i.2 G=+vU
ip1i.4 S=𝑠OLDU
ip1i.7 P=𝑖OLDU
ip1i.9 UCPreHilOLD
ipasslem11.a AX
ipasslem11.b BX
Assertion ipasslem11 CCSAPB=CAPB

Proof

Step Hyp Ref Expression
1 ip1i.1 X=BaseSetU
2 ip1i.2 G=+vU
3 ip1i.4 S=𝑠OLDU
4 ip1i.7 P=𝑖OLDU
5 ip1i.9 UCPreHilOLD
6 ipasslem11.a AX
7 ipasslem11.b BX
8 cnre CxyC=x+iy
9 ax-icn i
10 recn yy
11 mulcom iyiy=yi
12 9 10 11 sylancr yiy=yi
13 12 adantl xyiy=yi
14 13 oveq2d xyx+iy=x+yi
15 14 eqeq2d xyC=x+iyC=x+yi
16 recn xx
17 5 phnvi UNrmCVec
18 1 3 nvscl UNrmCVecxAXxSAX
19 17 6 18 mp3an13 xxSAX
20 16 19 syl xxSAX
21 mulcl yiyi
22 10 9 21 sylancl yyi
23 1 3 nvscl UNrmCVecyiAXyiSAX
24 17 6 23 mp3an13 yiyiSAX
25 22 24 syl yyiSAX
26 1 2 3 4 5 ipdiri xSAXyiSAXBXxSAGyiSAPB=xSAPB+yiSAPB
27 7 26 mp3an3 xSAXyiSAXxSAGyiSAPB=xSAPB+yiSAPB
28 20 25 27 syl2an xyxSAGyiSAPB=xSAPB+yiSAPB
29 1 2 3 4 5 6 7 ipasslem9 xxSAPB=xAPB
30 1 3 nvscl UNrmCVeciAXiSAX
31 17 9 6 30 mp3an iSAX
32 1 2 3 4 5 31 7 ipasslem9 yySiSAPB=yiSAPB
33 1 3 nvsass UNrmCVecyiAXyiSA=ySiSA
34 17 33 mpan yiAXyiSA=ySiSA
35 9 6 34 mp3an23 yyiSA=ySiSA
36 10 35 syl yyiSA=ySiSA
37 36 oveq1d yyiSAPB=ySiSAPB
38 1 4 dipcl UNrmCVecAXBXAPB
39 17 6 7 38 mp3an APB
40 mulass yiAPByiAPB=yiAPB
41 9 39 40 mp3an23 yyiAPB=yiAPB
42 10 41 syl yyiAPB=yiAPB
43 eqid normCVU=normCVU
44 1 2 3 4 5 6 7 43 ipasslem10 iSAPB=iAPB
45 44 oveq2i yiSAPB=yiAPB
46 42 45 eqtr4di yyiAPB=yiSAPB
47 32 37 46 3eqtr4d yyiSAPB=yiAPB
48 29 47 oveqan12d xyxSAPB+yiSAPB=xAPB+yiAPB
49 28 48 eqtrd xyxSAGyiSAPB=xAPB+yiAPB
50 1 2 3 nvdir UNrmCVecxyiAXx+yiSA=xSAGyiSA
51 17 50 mpan xyiAXx+yiSA=xSAGyiSA
52 6 51 mp3an3 xyix+yiSA=xSAGyiSA
53 16 22 52 syl2an xyx+yiSA=xSAGyiSA
54 53 oveq1d xyx+yiSAPB=xSAGyiSAPB
55 adddir xyiAPBx+yiAPB=xAPB+yiAPB
56 39 55 mp3an3 xyix+yiAPB=xAPB+yiAPB
57 16 22 56 syl2an xyx+yiAPB=xAPB+yiAPB
58 49 54 57 3eqtr4d xyx+yiSAPB=x+yiAPB
59 oveq1 C=x+yiCSA=x+yiSA
60 59 oveq1d C=x+yiCSAPB=x+yiSAPB
61 oveq1 C=x+yiCAPB=x+yiAPB
62 60 61 eqeq12d C=x+yiCSAPB=CAPBx+yiSAPB=x+yiAPB
63 58 62 syl5ibrcom xyC=x+yiCSAPB=CAPB
64 15 63 sylbid xyC=x+iyCSAPB=CAPB
65 64 rexlimivv xyC=x+iyCSAPB=CAPB
66 8 65 syl CCSAPB=CAPB