Description: The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that j must not occur in A . (Contributed by Scott Fenton, 18-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iprodclim3.1 | |
|
iprodclim3.2 | |
||
iprodclim3.3 | |
||
iprodclim3.4 | |
||
iprodclim3.5 | |
||
iprodclim3.6 | |
||
Assertion | iprodclim3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iprodclim3.1 | |
|
2 | iprodclim3.2 | |
|
3 | iprodclim3.3 | |
|
4 | iprodclim3.4 | |
|
5 | iprodclim3.5 | |
|
6 | iprodclim3.6 | |
|
7 | climdm | |
|
8 | 4 7 | sylib | |
9 | prodfc | |
|
10 | eqidd | |
|
11 | 5 | fmpttd | |
12 | 11 | ffvelcdmda | |
13 | 1 2 3 10 12 | iprod | |
14 | 9 13 | eqtr3id | |
15 | seqex | |
|
16 | 15 | a1i | |
17 | fvres | |
|
18 | fzssuz | |
|
19 | 18 1 | sseqtrri | |
20 | resmpt | |
|
21 | 19 20 | ax-mp | |
22 | 21 | fveq1i | |
23 | 17 22 | eqtr3di | |
24 | 23 | prodeq2i | |
25 | prodfc | |
|
26 | 24 25 | eqtri | |
27 | eqidd | |
|
28 | simpr | |
|
29 | 28 1 | eleqtrdi | |
30 | elfzuz | |
|
31 | 30 1 | eleqtrrdi | |
32 | 31 12 | sylan2 | |
33 | 32 | adantlr | |
34 | 27 29 33 | fprodser | |
35 | 26 34 | eqtr3id | |
36 | 6 35 | eqtr2d | |
37 | 1 16 4 2 36 | climeq | |
38 | 37 | iotabidv | |
39 | df-fv | |
|
40 | df-fv | |
|
41 | 38 39 40 | 3eqtr4g | |
42 | 14 41 | eqtrd | |
43 | 8 42 | breqtrrd | |