Metamath Proof Explorer


Theorem iprodclim3

Description: The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that j must not occur in A . (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodclim3.1 Z=M
iprodclim3.2 φM
iprodclim3.3 φnZyy0seqn×kZAy
iprodclim3.4 φFdom
iprodclim3.5 φkZA
iprodclim3.6 φjZFj=k=MjA
Assertion iprodclim3 φFkZA

Proof

Step Hyp Ref Expression
1 iprodclim3.1 Z=M
2 iprodclim3.2 φM
3 iprodclim3.3 φnZyy0seqn×kZAy
4 iprodclim3.4 φFdom
5 iprodclim3.5 φkZA
6 iprodclim3.6 φjZFj=k=MjA
7 climdm FdomFF
8 4 7 sylib φFF
9 prodfc mZkZAm=kZA
10 eqidd φmZkZAm=kZAm
11 5 fmpttd φkZA:Z
12 11 ffvelcdmda φmZkZAm
13 1 2 3 10 12 iprod φmZkZAm=seqM×kZA
14 9 13 eqtr3id φkZA=seqM×kZA
15 seqex seqM×kZAV
16 15 a1i φseqM×kZAV
17 fvres mMjkZAMjm=kZAm
18 fzssuz MjM
19 18 1 sseqtrri MjZ
20 resmpt MjZkZAMj=kMjA
21 19 20 ax-mp kZAMj=kMjA
22 21 fveq1i kZAMjm=kMjAm
23 17 22 eqtr3di mMjkZAm=kMjAm
24 23 prodeq2i m=MjkZAm=m=MjkMjAm
25 prodfc m=MjkMjAm=k=MjA
26 24 25 eqtri m=MjkZAm=k=MjA
27 eqidd φjZmMjkZAm=kZAm
28 simpr φjZjZ
29 28 1 eleqtrdi φjZjM
30 elfzuz mMjmM
31 30 1 eleqtrrdi mMjmZ
32 31 12 sylan2 φmMjkZAm
33 32 adantlr φjZmMjkZAm
34 27 29 33 fprodser φjZm=MjkZAm=seqM×kZAj
35 26 34 eqtr3id φjZk=MjA=seqM×kZAj
36 6 35 eqtr2d φjZseqM×kZAj=Fj
37 1 16 4 2 36 climeq φseqM×kZAxFx
38 37 iotabidv φιx|seqM×kZAx=ιx|Fx
39 df-fv seqM×kZA=ιx|seqM×kZAx
40 df-fv F=ιx|Fx
41 38 39 40 3eqtr4g φseqM×kZA=F
42 14 41 eqtrd φkZA=F
43 8 42 breqtrrd φFkZA