Description: Alternative way to express the predicate " W is Archimedean ", for Tosets. (Contributed by Thierry Arnoux, 30-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isarchi2.b | |
|
isarchi2.0 | |
||
isarchi2.x | |
||
isarchi2.l | |
||
isarchi2.t | |
||
Assertion | isarchi2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isarchi2.b | |
|
2 | isarchi2.0 | |
|
3 | isarchi2.x | |
|
4 | isarchi2.l | |
|
5 | isarchi2.t | |
|
6 | eqid | |
|
7 | 1 2 6 | isarchi | |
8 | 7 | adantr | |
9 | simpl1l | |
|
10 | simpl1r | |
|
11 | simpr | |
|
12 | 11 | nnnn0d | |
13 | simpl2 | |
|
14 | 1 3 10 12 13 | mulgnn0cld | |
15 | simpl3 | |
|
16 | 1 4 5 | tltnle | |
17 | 16 | con2bid | |
18 | 9 14 15 17 | syl3anc | |
19 | 18 | rexbidva | |
20 | 19 | imbi2d | |
21 | 1 2 3 5 | isinftm | |
22 | 21 | notbid | |
23 | rexnal | |
|
24 | 23 | imbi2i | |
25 | imnan | |
|
26 | 24 25 | bitr2i | |
27 | 22 26 | bitrdi | |
28 | 27 | 3adant1r | |
29 | 20 28 | bitr4d | |
30 | 29 | 3expb | |
31 | 30 | 2ralbidva | |
32 | 8 31 | bitr4d | |