Metamath Proof Explorer


Theorem isarchi2

Description: Alternative way to express the predicate " W is Archimedean ", for Tosets. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses isarchi2.b B=BaseW
isarchi2.0 0˙=0W
isarchi2.x ·˙=W
isarchi2.l ˙=W
isarchi2.t <˙=<W
Assertion isarchi2 WTosetWMndWArchixByB0˙<˙xny˙n·˙x

Proof

Step Hyp Ref Expression
1 isarchi2.b B=BaseW
2 isarchi2.0 0˙=0W
3 isarchi2.x ·˙=W
4 isarchi2.l ˙=W
5 isarchi2.t <˙=<W
6 eqid W=W
7 1 2 6 isarchi WTosetWArchixByB¬xWy
8 7 adantr WTosetWMndWArchixByB¬xWy
9 simpl1l WTosetWMndxByBnWToset
10 simpl1r WTosetWMndxByBnWMnd
11 simpr WTosetWMndxByBnn
12 11 nnnn0d WTosetWMndxByBnn0
13 simpl2 WTosetWMndxByBnxB
14 1 3 10 12 13 mulgnn0cld WTosetWMndxByBnn·˙xB
15 simpl3 WTosetWMndxByBnyB
16 1 4 5 tltnle WTosetn·˙xByBn·˙x<˙y¬y˙n·˙x
17 16 con2bid WTosetn·˙xByBy˙n·˙x¬n·˙x<˙y
18 9 14 15 17 syl3anc WTosetWMndxByBny˙n·˙x¬n·˙x<˙y
19 18 rexbidva WTosetWMndxByBny˙n·˙xn¬n·˙x<˙y
20 19 imbi2d WTosetWMndxByB0˙<˙xny˙n·˙x0˙<˙xn¬n·˙x<˙y
21 1 2 3 5 isinftm WTosetxByBxWy0˙<˙xnn·˙x<˙y
22 21 notbid WTosetxByB¬xWy¬0˙<˙xnn·˙x<˙y
23 rexnal n¬n·˙x<˙y¬nn·˙x<˙y
24 23 imbi2i 0˙<˙xn¬n·˙x<˙y0˙<˙x¬nn·˙x<˙y
25 imnan 0˙<˙x¬nn·˙x<˙y¬0˙<˙xnn·˙x<˙y
26 24 25 bitr2i ¬0˙<˙xnn·˙x<˙y0˙<˙xn¬n·˙x<˙y
27 22 26 bitrdi WTosetxByB¬xWy0˙<˙xn¬n·˙x<˙y
28 27 3adant1r WTosetWMndxByB¬xWy0˙<˙xn¬n·˙x<˙y
29 20 28 bitr4d WTosetWMndxByB0˙<˙xny˙n·˙x¬xWy
30 29 3expb WTosetWMndxByB0˙<˙xny˙n·˙x¬xWy
31 30 2ralbidva WTosetWMndxByB0˙<˙xny˙n·˙xxByB¬xWy
32 8 31 bitr4d WTosetWMndWArchixByB0˙<˙xny˙n·˙x