Metamath Proof Explorer


Theorem isbndx

Description: A "bounded extended metric" (meaning that it satisfies the same condition as a bounded metric, but with "metric" replaced with "extended metric") is a metric and thus is bounded in the conventional sense. (Contributed by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion isbndx MBndXM∞MetXxXr+X=xballMr

Proof

Step Hyp Ref Expression
1 isbnd MBndXMMetXxXr+X=xballMr
2 metxmet MMetXM∞MetX
3 simpr xXr+X=xballMrM∞MetXM∞MetX
4 xmetf M∞MetXM:X×X*
5 ffn M:X×X*MFnX×X
6 3 4 5 3syl xXr+X=xballMrM∞MetXMFnX×X
7 simprr M∞MetXxXr+X=xballMrX=xballMr
8 rpxr r+r*
9 eqid M-1=M-1
10 9 blssec M∞MetXxXr*xballMrxM-1
11 10 3expa M∞MetXxXr*xballMrxM-1
12 8 11 sylan2 M∞MetXxXr+xballMrxM-1
13 12 adantrr M∞MetXxXr+X=xballMrxballMrxM-1
14 7 13 eqsstrd M∞MetXxXr+X=xballMrXxM-1
15 14 sselda M∞MetXxXr+X=xballMryXyxM-1
16 vex yV
17 vex xV
18 16 17 elec yxM-1xM-1y
19 15 18 sylib M∞MetXxXr+X=xballMryXxM-1y
20 9 xmeterval M∞MetXxM-1yxXyXxMy
21 20 ad3antrrr M∞MetXxXr+X=xballMryXxM-1yxXyXxMy
22 19 21 mpbid M∞MetXxXr+X=xballMryXxXyXxMy
23 22 simp3d M∞MetXxXr+X=xballMryXxMy
24 23 ralrimiva M∞MetXxXr+X=xballMryXxMy
25 24 rexlimdvaa M∞MetXxXr+X=xballMryXxMy
26 25 ralimdva M∞MetXxXr+X=xballMrxXyXxMy
27 26 impcom xXr+X=xballMrM∞MetXxXyXxMy
28 ffnov M:X×XMFnX×XxXyXxMy
29 6 27 28 sylanbrc xXr+X=xballMrM∞MetXM:X×X
30 ismet2 MMetXM∞MetXM:X×X
31 3 29 30 sylanbrc xXr+X=xballMrM∞MetXMMetX
32 31 ex xXr+X=xballMrM∞MetXMMetX
33 2 32 impbid2 xXr+X=xballMrMMetXM∞MetX
34 33 pm5.32ri MMetXxXr+X=xballMrM∞MetXxXr+X=xballMr
35 1 34 bitri MBndXM∞MetXxXr+X=xballMr