Metamath Proof Explorer


Theorem isbndx

Description: A "bounded extended metric" (meaning that it satisfies the same condition as a bounded metric, but with "metric" replaced with "extended metric") is a metric and thus is bounded in the conventional sense. (Contributed by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion isbndx M Bnd X M ∞Met X x X r + X = x ball M r

Proof

Step Hyp Ref Expression
1 isbnd M Bnd X M Met X x X r + X = x ball M r
2 metxmet M Met X M ∞Met X
3 simpr x X r + X = x ball M r M ∞Met X M ∞Met X
4 xmetf M ∞Met X M : X × X *
5 ffn M : X × X * M Fn X × X
6 3 4 5 3syl x X r + X = x ball M r M ∞Met X M Fn X × X
7 simprr M ∞Met X x X r + X = x ball M r X = x ball M r
8 rpxr r + r *
9 eqid M -1 = M -1
10 9 blssec M ∞Met X x X r * x ball M r x M -1
11 10 3expa M ∞Met X x X r * x ball M r x M -1
12 8 11 sylan2 M ∞Met X x X r + x ball M r x M -1
13 12 adantrr M ∞Met X x X r + X = x ball M r x ball M r x M -1
14 7 13 eqsstrd M ∞Met X x X r + X = x ball M r X x M -1
15 14 sselda M ∞Met X x X r + X = x ball M r y X y x M -1
16 vex y V
17 vex x V
18 16 17 elec y x M -1 x M -1 y
19 15 18 sylib M ∞Met X x X r + X = x ball M r y X x M -1 y
20 9 xmeterval M ∞Met X x M -1 y x X y X x M y
21 20 ad3antrrr M ∞Met X x X r + X = x ball M r y X x M -1 y x X y X x M y
22 19 21 mpbid M ∞Met X x X r + X = x ball M r y X x X y X x M y
23 22 simp3d M ∞Met X x X r + X = x ball M r y X x M y
24 23 ralrimiva M ∞Met X x X r + X = x ball M r y X x M y
25 24 rexlimdvaa M ∞Met X x X r + X = x ball M r y X x M y
26 25 ralimdva M ∞Met X x X r + X = x ball M r x X y X x M y
27 26 impcom x X r + X = x ball M r M ∞Met X x X y X x M y
28 ffnov M : X × X M Fn X × X x X y X x M y
29 6 27 28 sylanbrc x X r + X = x ball M r M ∞Met X M : X × X
30 ismet2 M Met X M ∞Met X M : X × X
31 3 29 30 sylanbrc x X r + X = x ball M r M ∞Met X M Met X
32 31 ex x X r + X = x ball M r M ∞Met X M Met X
33 2 32 impbid2 x X r + X = x ball M r M Met X M ∞Met X
34 33 pm5.32ri M Met X x X r + X = x ball M r M ∞Met X x X r + X = x ball M r
35 1 34 bitri M Bnd X M ∞Met X x X r + X = x ball M r