Description: A "bounded extended metric" (meaning that it satisfies the same condition as a bounded metric, but with "metric" replaced with "extended metric") is a metric and thus is bounded in the conventional sense. (Contributed by Mario Carneiro, 12-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isbndx | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbnd | |
|
2 | metxmet | |
|
3 | simpr | |
|
4 | xmetf | |
|
5 | ffn | |
|
6 | 3 4 5 | 3syl | |
7 | simprr | |
|
8 | rpxr | |
|
9 | eqid | |
|
10 | 9 | blssec | |
11 | 10 | 3expa | |
12 | 8 11 | sylan2 | |
13 | 12 | adantrr | |
14 | 7 13 | eqsstrd | |
15 | 14 | sselda | |
16 | vex | |
|
17 | vex | |
|
18 | 16 17 | elec | |
19 | 15 18 | sylib | |
20 | 9 | xmeterval | |
21 | 20 | ad3antrrr | |
22 | 19 21 | mpbid | |
23 | 22 | simp3d | |
24 | 23 | ralrimiva | |
25 | 24 | rexlimdvaa | |
26 | 25 | ralimdva | |
27 | 26 | impcom | |
28 | ffnov | |
|
29 | 6 27 28 | sylanbrc | |
30 | ismet2 | |
|
31 | 3 29 30 | sylanbrc | |
32 | 31 | ex | |
33 | 2 32 | impbid2 | |
34 | 33 | pm5.32ri | |
35 | 1 34 | bitri | |