Step |
Hyp |
Ref |
Expression |
1 |
|
isbnd |
β’ ( π β ( Bnd β π ) β ( π β ( Met β π ) β§ β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) ) |
2 |
|
metxmet |
β’ ( π β ( Met β π ) β π β ( βMet β π ) ) |
3 |
|
simpr |
β’ ( ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β§ π β ( βMet β π ) ) β π β ( βMet β π ) ) |
4 |
|
xmetf |
β’ ( π β ( βMet β π ) β π : ( π Γ π ) βΆ β* ) |
5 |
|
ffn |
β’ ( π : ( π Γ π ) βΆ β* β π Fn ( π Γ π ) ) |
6 |
3 4 5
|
3syl |
β’ ( ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β§ π β ( βMet β π ) ) β π Fn ( π Γ π ) ) |
7 |
|
simprr |
β’ ( ( ( π β ( βMet β π ) β§ π₯ β π ) β§ ( π β β+ β§ π = ( π₯ ( ball β π ) π ) ) ) β π = ( π₯ ( ball β π ) π ) ) |
8 |
|
rpxr |
β’ ( π β β+ β π β β* ) |
9 |
|
eqid |
β’ ( β‘ π β β ) = ( β‘ π β β ) |
10 |
9
|
blssec |
β’ ( ( π β ( βMet β π ) β§ π₯ β π β§ π β β* ) β ( π₯ ( ball β π ) π ) β [ π₯ ] ( β‘ π β β ) ) |
11 |
10
|
3expa |
β’ ( ( ( π β ( βMet β π ) β§ π₯ β π ) β§ π β β* ) β ( π₯ ( ball β π ) π ) β [ π₯ ] ( β‘ π β β ) ) |
12 |
8 11
|
sylan2 |
β’ ( ( ( π β ( βMet β π ) β§ π₯ β π ) β§ π β β+ ) β ( π₯ ( ball β π ) π ) β [ π₯ ] ( β‘ π β β ) ) |
13 |
12
|
adantrr |
β’ ( ( ( π β ( βMet β π ) β§ π₯ β π ) β§ ( π β β+ β§ π = ( π₯ ( ball β π ) π ) ) ) β ( π₯ ( ball β π ) π ) β [ π₯ ] ( β‘ π β β ) ) |
14 |
7 13
|
eqsstrd |
β’ ( ( ( π β ( βMet β π ) β§ π₯ β π ) β§ ( π β β+ β§ π = ( π₯ ( ball β π ) π ) ) ) β π β [ π₯ ] ( β‘ π β β ) ) |
15 |
14
|
sselda |
β’ ( ( ( ( π β ( βMet β π ) β§ π₯ β π ) β§ ( π β β+ β§ π = ( π₯ ( ball β π ) π ) ) ) β§ π¦ β π ) β π¦ β [ π₯ ] ( β‘ π β β ) ) |
16 |
|
vex |
β’ π¦ β V |
17 |
|
vex |
β’ π₯ β V |
18 |
16 17
|
elec |
β’ ( π¦ β [ π₯ ] ( β‘ π β β ) β π₯ ( β‘ π β β ) π¦ ) |
19 |
15 18
|
sylib |
β’ ( ( ( ( π β ( βMet β π ) β§ π₯ β π ) β§ ( π β β+ β§ π = ( π₯ ( ball β π ) π ) ) ) β§ π¦ β π ) β π₯ ( β‘ π β β ) π¦ ) |
20 |
9
|
xmeterval |
β’ ( π β ( βMet β π ) β ( π₯ ( β‘ π β β ) π¦ β ( π₯ β π β§ π¦ β π β§ ( π₯ π π¦ ) β β ) ) ) |
21 |
20
|
ad3antrrr |
β’ ( ( ( ( π β ( βMet β π ) β§ π₯ β π ) β§ ( π β β+ β§ π = ( π₯ ( ball β π ) π ) ) ) β§ π¦ β π ) β ( π₯ ( β‘ π β β ) π¦ β ( π₯ β π β§ π¦ β π β§ ( π₯ π π¦ ) β β ) ) ) |
22 |
19 21
|
mpbid |
β’ ( ( ( ( π β ( βMet β π ) β§ π₯ β π ) β§ ( π β β+ β§ π = ( π₯ ( ball β π ) π ) ) ) β§ π¦ β π ) β ( π₯ β π β§ π¦ β π β§ ( π₯ π π¦ ) β β ) ) |
23 |
22
|
simp3d |
β’ ( ( ( ( π β ( βMet β π ) β§ π₯ β π ) β§ ( π β β+ β§ π = ( π₯ ( ball β π ) π ) ) ) β§ π¦ β π ) β ( π₯ π π¦ ) β β ) |
24 |
23
|
ralrimiva |
β’ ( ( ( π β ( βMet β π ) β§ π₯ β π ) β§ ( π β β+ β§ π = ( π₯ ( ball β π ) π ) ) ) β β π¦ β π ( π₯ π π¦ ) β β ) |
25 |
24
|
rexlimdvaa |
β’ ( ( π β ( βMet β π ) β§ π₯ β π ) β ( β π β β+ π = ( π₯ ( ball β π ) π ) β β π¦ β π ( π₯ π π¦ ) β β ) ) |
26 |
25
|
ralimdva |
β’ ( π β ( βMet β π ) β ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β β π₯ β π β π¦ β π ( π₯ π π¦ ) β β ) ) |
27 |
26
|
impcom |
β’ ( ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β§ π β ( βMet β π ) ) β β π₯ β π β π¦ β π ( π₯ π π¦ ) β β ) |
28 |
|
ffnov |
β’ ( π : ( π Γ π ) βΆ β β ( π Fn ( π Γ π ) β§ β π₯ β π β π¦ β π ( π₯ π π¦ ) β β ) ) |
29 |
6 27 28
|
sylanbrc |
β’ ( ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β§ π β ( βMet β π ) ) β π : ( π Γ π ) βΆ β ) |
30 |
|
ismet2 |
β’ ( π β ( Met β π ) β ( π β ( βMet β π ) β§ π : ( π Γ π ) βΆ β ) ) |
31 |
3 29 30
|
sylanbrc |
β’ ( ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β§ π β ( βMet β π ) ) β π β ( Met β π ) ) |
32 |
31
|
ex |
β’ ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β ( π β ( βMet β π ) β π β ( Met β π ) ) ) |
33 |
2 32
|
impbid2 |
β’ ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β ( π β ( Met β π ) β π β ( βMet β π ) ) ) |
34 |
33
|
pm5.32ri |
β’ ( ( π β ( Met β π ) β§ β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) β ( π β ( βMet β π ) β§ β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) ) |
35 |
1 34
|
bitri |
β’ ( π β ( Bnd β π ) β ( π β ( βMet β π ) β§ β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) ) |