Step |
Hyp |
Ref |
Expression |
1 |
|
isbndx |
β’ ( π β ( Bnd β π ) β ( π β ( βMet β π ) β§ β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) ) |
2 |
1
|
anbi1i |
β’ ( ( π β ( Bnd β π ) β§ π β β
) β ( ( π β ( βMet β π ) β§ β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) β§ π β β
) ) |
3 |
|
anass |
β’ ( ( ( π β ( βMet β π ) β§ β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) β§ π β β
) β ( π β ( βMet β π ) β§ ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β§ π β β
) ) ) |
4 |
|
r19.2z |
β’ ( ( π β β
β§ β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) β β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) |
5 |
4
|
ancoms |
β’ ( ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β§ π β β
) β β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) |
6 |
|
oveq1 |
β’ ( π₯ = π¦ β ( π₯ ( ball β π ) π ) = ( π¦ ( ball β π ) π ) ) |
7 |
6
|
eqeq2d |
β’ ( π₯ = π¦ β ( π = ( π₯ ( ball β π ) π ) β π = ( π¦ ( ball β π ) π ) ) ) |
8 |
|
oveq2 |
β’ ( π = π β ( π¦ ( ball β π ) π ) = ( π¦ ( ball β π ) π ) ) |
9 |
8
|
eqeq2d |
β’ ( π = π β ( π = ( π¦ ( ball β π ) π ) β π = ( π¦ ( ball β π ) π ) ) ) |
10 |
7 9
|
cbvrex2vw |
β’ ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β β π¦ β π β π β β+ π = ( π¦ ( ball β π ) π ) ) |
11 |
|
2rp |
β’ 2 β β+ |
12 |
|
rpmulcl |
β’ ( ( 2 β β+ β§ π β β+ ) β ( 2 Β· π ) β β+ ) |
13 |
11 12
|
mpan |
β’ ( π β β+ β ( 2 Β· π ) β β+ ) |
14 |
13
|
ad2antll |
β’ ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β ( 2 Β· π ) β β+ ) |
15 |
14
|
ad2antrr |
β’ ( ( ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β§ π₯ β π ) β§ π = ( π¦ ( ball β π ) π ) ) β ( 2 Β· π ) β β+ ) |
16 |
|
rpcn |
β’ ( π β β+ β π β β ) |
17 |
|
2cnd |
β’ ( π β β+ β 2 β β ) |
18 |
|
2ne0 |
β’ 2 β 0 |
19 |
18
|
a1i |
β’ ( π β β+ β 2 β 0 ) |
20 |
|
divcan3 |
β’ ( ( π β β β§ 2 β β β§ 2 β 0 ) β ( ( 2 Β· π ) / 2 ) = π ) |
21 |
20
|
eqcomd |
β’ ( ( π β β β§ 2 β β β§ 2 β 0 ) β π = ( ( 2 Β· π ) / 2 ) ) |
22 |
16 17 19 21
|
syl3anc |
β’ ( π β β+ β π = ( ( 2 Β· π ) / 2 ) ) |
23 |
22
|
oveq2d |
β’ ( π β β+ β ( π¦ ( ball β π ) π ) = ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) |
24 |
23
|
eqeq2d |
β’ ( π β β+ β ( π = ( π¦ ( ball β π ) π ) β π = ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) ) |
25 |
24
|
biimpd |
β’ ( π β β+ β ( π = ( π¦ ( ball β π ) π ) β π = ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) ) |
26 |
25
|
ad2antll |
β’ ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β ( π = ( π¦ ( ball β π ) π ) β π = ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) ) |
27 |
26
|
adantr |
β’ ( ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β§ π₯ β π ) β ( π = ( π¦ ( ball β π ) π ) β π = ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) ) |
28 |
27
|
imp |
β’ ( ( ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β§ π₯ β π ) β§ π = ( π¦ ( ball β π ) π ) ) β π = ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) |
29 |
|
simpr |
β’ ( ( ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β§ π₯ β π ) β§ π = ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) β π = ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) |
30 |
|
eleq2 |
β’ ( π = ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) β ( π₯ β π β π₯ β ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) ) |
31 |
30
|
biimpac |
β’ ( ( π₯ β π β§ π = ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) β π₯ β ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) |
32 |
|
2re |
β’ 2 β β |
33 |
|
rpre |
β’ ( π β β+ β π β β ) |
34 |
|
remulcl |
β’ ( ( 2 β β β§ π β β ) β ( 2 Β· π ) β β ) |
35 |
32 33 34
|
sylancr |
β’ ( π β β+ β ( 2 Β· π ) β β ) |
36 |
|
blhalf |
β’ ( ( ( π β ( βMet β π ) β§ π¦ β π ) β§ ( ( 2 Β· π ) β β β§ π₯ β ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) ) β ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) β ( π₯ ( ball β π ) ( 2 Β· π ) ) ) |
37 |
36
|
expr |
β’ ( ( ( π β ( βMet β π ) β§ π¦ β π ) β§ ( 2 Β· π ) β β ) β ( π₯ β ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) β ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) β ( π₯ ( ball β π ) ( 2 Β· π ) ) ) ) |
38 |
35 37
|
sylan2 |
β’ ( ( ( π β ( βMet β π ) β§ π¦ β π ) β§ π β β+ ) β ( π₯ β ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) β ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) β ( π₯ ( ball β π ) ( 2 Β· π ) ) ) ) |
39 |
38
|
anasss |
β’ ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β ( π₯ β ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) β ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) β ( π₯ ( ball β π ) ( 2 Β· π ) ) ) ) |
40 |
39
|
imp |
β’ ( ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β§ π₯ β ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) β ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) β ( π₯ ( ball β π ) ( 2 Β· π ) ) ) |
41 |
31 40
|
sylan2 |
β’ ( ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β§ ( π₯ β π β§ π = ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) ) β ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) β ( π₯ ( ball β π ) ( 2 Β· π ) ) ) |
42 |
41
|
anassrs |
β’ ( ( ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β§ π₯ β π ) β§ π = ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) β ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) β ( π₯ ( ball β π ) ( 2 Β· π ) ) ) |
43 |
29 42
|
eqsstrd |
β’ ( ( ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β§ π₯ β π ) β§ π = ( π¦ ( ball β π ) ( ( 2 Β· π ) / 2 ) ) ) β π β ( π₯ ( ball β π ) ( 2 Β· π ) ) ) |
44 |
28 43
|
syldan |
β’ ( ( ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β§ π₯ β π ) β§ π = ( π¦ ( ball β π ) π ) ) β π β ( π₯ ( ball β π ) ( 2 Β· π ) ) ) |
45 |
13
|
adantl |
β’ ( ( π¦ β π β§ π β β+ ) β ( 2 Β· π ) β β+ ) |
46 |
|
rpxr |
β’ ( ( 2 Β· π ) β β+ β ( 2 Β· π ) β β* ) |
47 |
|
blssm |
β’ ( ( π β ( βMet β π ) β§ π₯ β π β§ ( 2 Β· π ) β β* ) β ( π₯ ( ball β π ) ( 2 Β· π ) ) β π ) |
48 |
46 47
|
syl3an3 |
β’ ( ( π β ( βMet β π ) β§ π₯ β π β§ ( 2 Β· π ) β β+ ) β ( π₯ ( ball β π ) ( 2 Β· π ) ) β π ) |
49 |
48
|
3expa |
β’ ( ( ( π β ( βMet β π ) β§ π₯ β π ) β§ ( 2 Β· π ) β β+ ) β ( π₯ ( ball β π ) ( 2 Β· π ) ) β π ) |
50 |
45 49
|
sylan2 |
β’ ( ( ( π β ( βMet β π ) β§ π₯ β π ) β§ ( π¦ β π β§ π β β+ ) ) β ( π₯ ( ball β π ) ( 2 Β· π ) ) β π ) |
51 |
50
|
an32s |
β’ ( ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β§ π₯ β π ) β ( π₯ ( ball β π ) ( 2 Β· π ) ) β π ) |
52 |
51
|
adantr |
β’ ( ( ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β§ π₯ β π ) β§ π = ( π¦ ( ball β π ) π ) ) β ( π₯ ( ball β π ) ( 2 Β· π ) ) β π ) |
53 |
44 52
|
eqssd |
β’ ( ( ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β§ π₯ β π ) β§ π = ( π¦ ( ball β π ) π ) ) β π = ( π₯ ( ball β π ) ( 2 Β· π ) ) ) |
54 |
|
oveq2 |
β’ ( π = ( 2 Β· π ) β ( π₯ ( ball β π ) π ) = ( π₯ ( ball β π ) ( 2 Β· π ) ) ) |
55 |
54
|
rspceeqv |
β’ ( ( ( 2 Β· π ) β β+ β§ π = ( π₯ ( ball β π ) ( 2 Β· π ) ) ) β β π β β+ π = ( π₯ ( ball β π ) π ) ) |
56 |
15 53 55
|
syl2anc |
β’ ( ( ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β§ π₯ β π ) β§ π = ( π¦ ( ball β π ) π ) ) β β π β β+ π = ( π₯ ( ball β π ) π ) ) |
57 |
56
|
ex |
β’ ( ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β§ π₯ β π ) β ( π = ( π¦ ( ball β π ) π ) β β π β β+ π = ( π₯ ( ball β π ) π ) ) ) |
58 |
57
|
ralrimdva |
β’ ( ( π β ( βMet β π ) β§ ( π¦ β π β§ π β β+ ) ) β ( π = ( π¦ ( ball β π ) π ) β β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) ) |
59 |
58
|
rexlimdvva |
β’ ( π β ( βMet β π ) β ( β π¦ β π β π β β+ π = ( π¦ ( ball β π ) π ) β β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) ) |
60 |
10 59
|
biimtrid |
β’ ( π β ( βMet β π ) β ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) ) |
61 |
|
rexn0 |
β’ ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β π β β
) |
62 |
61
|
a1i |
β’ ( π β ( βMet β π ) β ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β π β β
) ) |
63 |
60 62
|
jcad |
β’ ( π β ( βMet β π ) β ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β§ π β β
) ) ) |
64 |
5 63
|
impbid2 |
β’ ( π β ( βMet β π ) β ( ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β§ π β β
) β β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) ) |
65 |
64
|
pm5.32i |
β’ ( ( π β ( βMet β π ) β§ ( β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) β§ π β β
) ) β ( π β ( βMet β π ) β§ β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) ) |
66 |
2 3 65
|
3bitri |
β’ ( ( π β ( Bnd β π ) β§ π β β
) β ( π β ( βMet β π ) β§ β π₯ β π β π β β+ π = ( π₯ ( ball β π ) π ) ) ) |