| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscgra.p |
|
| 2 |
|
iscgra.i |
|
| 3 |
|
iscgra.k |
|
| 4 |
|
iscgra.g |
|
| 5 |
|
iscgra.a |
|
| 6 |
|
iscgra.b |
|
| 7 |
|
iscgra.c |
|
| 8 |
|
iscgra.d |
|
| 9 |
|
iscgra.e |
|
| 10 |
|
iscgra.f |
|
| 11 |
|
iscgra1.m |
|
| 12 |
|
iscgra1.1 |
|
| 13 |
|
iscgra1.2 |
|
| 14 |
1 2 3 4 5 6 7 8 9 10
|
iscgra |
|
| 15 |
9
|
ad3antrrr |
|
| 16 |
6
|
ad3antrrr |
|
| 17 |
5
|
ad3antrrr |
|
| 18 |
4
|
ad3antrrr |
|
| 19 |
8
|
ad3antrrr |
|
| 20 |
|
simpllr |
|
| 21 |
|
simpr2 |
|
| 22 |
1 2 3 20 19 15 18 21
|
hlne2 |
|
| 23 |
12
|
ad3antrrr |
|
| 24 |
23
|
necomd |
|
| 25 |
1 2 3 19 15 15 18 22
|
hlid |
|
| 26 |
|
eqid |
|
| 27 |
7
|
ad3antrrr |
|
| 28 |
|
simplr |
|
| 29 |
|
simpr1 |
|
| 30 |
1 11 2 26 18 17 16 27 20 15 28 29
|
cgr3simp1 |
|
| 31 |
30
|
eqcomd |
|
| 32 |
1 11 2 18 20 15 17 16 31
|
tgcgrcomlr |
|
| 33 |
13
|
ad3antrrr |
|
| 34 |
33
|
eqcomd |
|
| 35 |
1 11 2 18 19 15 17 16 34
|
tgcgrcomlr |
|
| 36 |
1 2 3 15 16 17 18 19 11 22 24 20 19 21 25 32 35
|
hlcgreulem |
|
| 37 |
|
simpr3 |
|
| 38 |
36 29 37
|
jca32 |
|
| 39 |
|
simprrl |
|
| 40 |
|
simprl |
|
| 41 |
8
|
ad3antrrr |
|
| 42 |
9
|
ad3antrrr |
|
| 43 |
4
|
ad3antrrr |
|
| 44 |
1 11 2 4 5 6 8 9 13 12
|
tgcgrneq |
|
| 45 |
44
|
ad3antrrr |
|
| 46 |
1 2 3 41 41 42 43 45
|
hlid |
|
| 47 |
40 46
|
eqbrtrd |
|
| 48 |
|
simprrr |
|
| 49 |
39 47 48
|
3jca |
|
| 50 |
38 49
|
impbida |
|
| 51 |
50
|
rexbidva |
|
| 52 |
|
r19.42v |
|
| 53 |
51 52
|
bitrdi |
|
| 54 |
53
|
rexbidva |
|
| 55 |
|
id |
|
| 56 |
|
eqidd |
|
| 57 |
|
eqidd |
|
| 58 |
55 56 57
|
s3eqd |
|
| 59 |
58
|
breq2d |
|
| 60 |
59
|
anbi1d |
|
| 61 |
60
|
rexbidv |
|
| 62 |
61
|
ceqsrexv |
|
| 63 |
8 62
|
syl |
|
| 64 |
14 54 63
|
3bitrd |
|