| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fncld |
|
| 2 |
|
fnfun |
|
| 3 |
1 2
|
ax-mp |
|
| 4 |
|
fvelima |
|
| 5 |
3 4
|
mpan |
|
| 6 |
|
cldmreon |
|
| 7 |
|
topontop |
|
| 8 |
|
0cld |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
uncld |
|
| 11 |
10
|
adantl |
|
| 12 |
11
|
ralrimivva |
|
| 13 |
6 9 12
|
3jca |
|
| 14 |
|
eleq1 |
|
| 15 |
|
eleq2 |
|
| 16 |
|
eleq2 |
|
| 17 |
16
|
raleqbi1dv |
|
| 18 |
17
|
raleqbi1dv |
|
| 19 |
14 15 18
|
3anbi123d |
|
| 20 |
13 19
|
syl5ibcom |
|
| 21 |
20
|
rexlimiv |
|
| 22 |
5 21
|
syl |
|
| 23 |
|
simp1 |
|
| 24 |
|
simp2 |
|
| 25 |
|
uneq1 |
|
| 26 |
25
|
eleq1d |
|
| 27 |
|
uneq2 |
|
| 28 |
27
|
eleq1d |
|
| 29 |
26 28
|
rspc2v |
|
| 30 |
29
|
com12 |
|
| 31 |
30
|
3ad2ant3 |
|
| 32 |
31
|
3impib |
|
| 33 |
|
eqid |
|
| 34 |
23 24 32 33
|
mretopd |
|
| 35 |
34
|
simprd |
|
| 36 |
34
|
simpld |
|
| 37 |
7
|
ssriv |
|
| 38 |
1
|
fndmi |
|
| 39 |
37 38
|
sseqtrri |
|
| 40 |
|
funfvima2 |
|
| 41 |
3 39 40
|
mp2an |
|
| 42 |
36 41
|
syl |
|
| 43 |
35 42
|
eqeltrd |
|
| 44 |
22 43
|
impbii |
|