Metamath Proof Explorer


Theorem isfil2

Description: Derive the standard axioms of a filter. (Contributed by Mario Carneiro, 27-Nov-2013) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion isfil2 FFilXF𝒫X¬FXFx𝒫XyFyxxFxFyFxyF

Proof

Step Hyp Ref Expression
1 filsspw FFilXF𝒫X
2 0nelfil FFilX¬F
3 filtop FFilXXF
4 1 2 3 3jca FFilXF𝒫X¬FXF
5 elpwi x𝒫XxX
6 filss FFilXyFxXyxxF
7 6 3exp2 FFilXyFxXyxxF
8 7 com23 FFilXxXyFyxxF
9 8 imp FFilXxXyFyxxF
10 9 rexlimdv FFilXxXyFyxxF
11 5 10 sylan2 FFilXx𝒫XyFyxxF
12 11 ralrimiva FFilXx𝒫XyFyxxF
13 filin FFilXxFyFxyF
14 13 3expb FFilXxFyFxyF
15 14 ralrimivva FFilXxFyFxyF
16 4 12 15 3jca FFilXF𝒫X¬FXFx𝒫XyFyxxFxFyFxyF
17 simp11 F𝒫X¬FXFx𝒫XyFyxxFxFyFxyFF𝒫X
18 simp13 F𝒫X¬FXFx𝒫XyFyxxFxFyFxyFXF
19 18 ne0d F𝒫X¬FXFx𝒫XyFyxxFxFyFxyFF
20 simp12 F𝒫X¬FXFx𝒫XyFyxxFxFyFxyF¬F
21 df-nel F¬F
22 20 21 sylibr F𝒫X¬FXFx𝒫XyFyxxFxFyFxyFF
23 ssid xyxy
24 sseq1 z=xyzxyxyxy
25 24 rspcev xyFxyxyzFzxy
26 23 25 mpan2 xyFzFzxy
27 26 ralimi yFxyFyFzFzxy
28 27 ralimi xFyFxyFxFyFzFzxy
29 28 3ad2ant3 F𝒫X¬FXFx𝒫XyFyxxFxFyFxyFxFyFzFzxy
30 19 22 29 3jca F𝒫X¬FXFx𝒫XyFyxxFxFyFxyFFFxFyFzFzxy
31 isfbas2 XFFfBasXF𝒫XFFxFyFzFzxy
32 18 31 syl F𝒫X¬FXFx𝒫XyFyxxFxFyFxyFFfBasXF𝒫XFFxFyFzFzxy
33 17 30 32 mpbir2and F𝒫X¬FXFx𝒫XyFyxxFxFyFxyFFfBasX
34 n0 F𝒫xyyF𝒫x
35 elin yF𝒫xyFy𝒫x
36 elpwi y𝒫xyx
37 36 anim2i yFy𝒫xyFyx
38 35 37 sylbi yF𝒫xyFyx
39 38 eximi yyF𝒫xyyFyx
40 34 39 sylbi F𝒫xyyFyx
41 df-rex yFyxyyFyx
42 40 41 sylibr F𝒫xyFyx
43 42 imim1i yFyxxFF𝒫xxF
44 43 ralimi x𝒫XyFyxxFx𝒫XF𝒫xxF
45 44 3ad2ant2 F𝒫X¬FXFx𝒫XyFyxxFxFyFxyFx𝒫XF𝒫xxF
46 isfil FFilXFfBasXx𝒫XF𝒫xxF
47 33 45 46 sylanbrc F𝒫X¬FXFx𝒫XyFyxxFxFyFxyFFFilX
48 16 47 impbii FFilXF𝒫X¬FXFx𝒫XyFyxxFxFyFxyF