Metamath Proof Explorer


Theorem ishlg

Description: Rays : Definition 6.1 of Schwabhauser p. 43. With this definition, A ( KC ) B means that A and B are on the same ray with initial point C . This follows the same notation as Schwabhauser where rays are first defined as a relation. It is possible to recover the ray itself using e.g., ( ( KC ) " { A } ) . (Contributed by Thierry Arnoux, 21-Dec-2019)

Ref Expression
Hypotheses ishlg.p P=BaseG
ishlg.i I=ItvG
ishlg.k K=hl𝒢G
ishlg.a φAP
ishlg.b φBP
ishlg.c φCP
ishlg.g φGV
Assertion ishlg φAKCBACBCACIBBCIA

Proof

Step Hyp Ref Expression
1 ishlg.p P=BaseG
2 ishlg.i I=ItvG
3 ishlg.k K=hl𝒢G
4 ishlg.a φAP
5 ishlg.b φBP
6 ishlg.c φCP
7 ishlg.g φGV
8 simpl a=Ab=Ba=A
9 8 neeq1d a=Ab=BaCAC
10 simpr a=Ab=Bb=B
11 10 neeq1d a=Ab=BbCBC
12 10 oveq2d a=Ab=BCIb=CIB
13 8 12 eleq12d a=Ab=BaCIbACIB
14 8 oveq2d a=Ab=BCIa=CIA
15 10 14 eleq12d a=Ab=BbCIaBCIA
16 13 15 orbi12d a=Ab=BaCIbbCIaACIBBCIA
17 9 11 16 3anbi123d a=Ab=BaCbCaCIbbCIaACBCACIBBCIA
18 eqid ab|aPbPaCbCaCIbbCIa=ab|aPbPaCbCaCIbbCIa
19 17 18 brab2a Aab|aPbPaCbCaCIbbCIaBAPBPACBCACIBBCIA
20 19 a1i φAab|aPbPaCbCaCIbbCIaBAPBPACBCACIBBCIA
21 elex GVGV
22 fveq2 g=GBaseg=BaseG
23 22 1 eqtr4di g=GBaseg=P
24 23 eleq2d g=GaBasegaP
25 23 eleq2d g=GbBasegbP
26 24 25 anbi12d g=GaBasegbBasegaPbP
27 fveq2 g=GItvg=ItvG
28 27 2 eqtr4di g=GItvg=I
29 28 oveqd g=GcItvgb=cIb
30 29 eleq2d g=GacItvgbacIb
31 28 oveqd g=GcItvga=cIa
32 31 eleq2d g=GbcItvgabcIa
33 30 32 orbi12d g=GacItvgbbcItvgaacIbbcIa
34 33 3anbi3d g=GacbcacItvgbbcItvgaacbcacIbbcIa
35 26 34 anbi12d g=GaBasegbBasegacbcacItvgbbcItvgaaPbPacbcacIbbcIa
36 35 opabbidv g=Gab|aBasegbBasegacbcacItvgbbcItvga=ab|aPbPacbcacIbbcIa
37 23 36 mpteq12dv g=GcBasegab|aBasegbBasegacbcacItvgbbcItvga=cPab|aPbPacbcacIbbcIa
38 df-hlg hl𝒢=gVcBasegab|aBasegbBasegacbcacItvgbbcItvga
39 37 38 1 mptfvmpt GVhl𝒢G=cPab|aPbPacbcacIbbcIa
40 7 21 39 3syl φhl𝒢G=cPab|aPbPacbcacIbbcIa
41 3 40 eqtrid φK=cPab|aPbPacbcacIbbcIa
42 neeq2 c=CacaC
43 neeq2 c=CbcbC
44 oveq1 c=CcIb=CIb
45 44 eleq2d c=CacIbaCIb
46 oveq1 c=CcIa=CIa
47 46 eleq2d c=CbcIabCIa
48 45 47 orbi12d c=CacIbbcIaaCIbbCIa
49 42 43 48 3anbi123d c=CacbcacIbbcIaaCbCaCIbbCIa
50 49 anbi2d c=CaPbPacbcacIbbcIaaPbPaCbCaCIbbCIa
51 50 opabbidv c=Cab|aPbPacbcacIbbcIa=ab|aPbPaCbCaCIbbCIa
52 51 adantl φc=Cab|aPbPacbcacIbbcIa=ab|aPbPaCbCaCIbbCIa
53 1 fvexi PV
54 53 53 xpex P×PV
55 opabssxp ab|aPbPaCbCaCIbbCIaP×P
56 54 55 ssexi ab|aPbPaCbCaCIbbCIaV
57 56 a1i φab|aPbPaCbCaCIbbCIaV
58 41 52 6 57 fvmptd φKC=ab|aPbPaCbCaCIbbCIa
59 58 breqd φAKCBAab|aPbPaCbCaCIbbCIaB
60 4 5 jca φAPBP
61 60 biantrurd φACBCACIBBCIAAPBPACBCACIBBCIA
62 20 59 61 3bitr4d φAKCBACBCACIBBCIA