Description: Rays : Definition 6.1 of Schwabhauser p. 43. With this definition, A ( KC ) B means that A and B are on the same ray with initial point C . This follows the same notation as Schwabhauser where rays are first defined as a relation. It is possible to recover the ray itself using e.g., ( ( KC ) " { A } ) . (Contributed by Thierry Arnoux, 21-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ishlg.p | |
|
ishlg.i | |
||
ishlg.k | |
||
ishlg.a | |
||
ishlg.b | |
||
ishlg.c | |
||
ishlg.g | |
||
Assertion | ishlg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlg.p | |
|
2 | ishlg.i | |
|
3 | ishlg.k | |
|
4 | ishlg.a | |
|
5 | ishlg.b | |
|
6 | ishlg.c | |
|
7 | ishlg.g | |
|
8 | simpl | |
|
9 | 8 | neeq1d | |
10 | simpr | |
|
11 | 10 | neeq1d | |
12 | 10 | oveq2d | |
13 | 8 12 | eleq12d | |
14 | 8 | oveq2d | |
15 | 10 14 | eleq12d | |
16 | 13 15 | orbi12d | |
17 | 9 11 16 | 3anbi123d | |
18 | eqid | |
|
19 | 17 18 | brab2a | |
20 | 19 | a1i | |
21 | elex | |
|
22 | fveq2 | |
|
23 | 22 1 | eqtr4di | |
24 | 23 | eleq2d | |
25 | 23 | eleq2d | |
26 | 24 25 | anbi12d | |
27 | fveq2 | |
|
28 | 27 2 | eqtr4di | |
29 | 28 | oveqd | |
30 | 29 | eleq2d | |
31 | 28 | oveqd | |
32 | 31 | eleq2d | |
33 | 30 32 | orbi12d | |
34 | 33 | 3anbi3d | |
35 | 26 34 | anbi12d | |
36 | 35 | opabbidv | |
37 | 23 36 | mpteq12dv | |
38 | df-hlg | |
|
39 | 37 38 1 | mptfvmpt | |
40 | 7 21 39 | 3syl | |
41 | 3 40 | eqtrid | |
42 | neeq2 | |
|
43 | neeq2 | |
|
44 | oveq1 | |
|
45 | 44 | eleq2d | |
46 | oveq1 | |
|
47 | 46 | eleq2d | |
48 | 45 47 | orbi12d | |
49 | 42 43 48 | 3anbi123d | |
50 | 49 | anbi2d | |
51 | 50 | opabbidv | |
52 | 51 | adantl | |
53 | 1 | fvexi | |
54 | 53 53 | xpex | |
55 | opabssxp | |
|
56 | 54 55 | ssexi | |
57 | 56 | a1i | |
58 | 41 52 6 57 | fvmptd | |
59 | 58 | breqd | |
60 | 4 5 | jca | |
61 | 60 | biantrurd | |
62 | 20 59 61 | 3bitr4d | |