| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
|
| 2 |
|
ishlg.i |
|
| 3 |
|
ishlg.k |
|
| 4 |
|
ishlg.a |
|
| 5 |
|
ishlg.b |
|
| 6 |
|
ishlg.c |
|
| 7 |
|
ishlg.g |
|
| 8 |
|
simpl |
|
| 9 |
8
|
neeq1d |
|
| 10 |
|
simpr |
|
| 11 |
10
|
neeq1d |
|
| 12 |
10
|
oveq2d |
|
| 13 |
8 12
|
eleq12d |
|
| 14 |
8
|
oveq2d |
|
| 15 |
10 14
|
eleq12d |
|
| 16 |
13 15
|
orbi12d |
|
| 17 |
9 11 16
|
3anbi123d |
|
| 18 |
|
eqid |
|
| 19 |
17 18
|
brab2a |
|
| 20 |
19
|
a1i |
|
| 21 |
|
elex |
|
| 22 |
|
fveq2 |
|
| 23 |
22 1
|
eqtr4di |
|
| 24 |
23
|
eleq2d |
|
| 25 |
23
|
eleq2d |
|
| 26 |
24 25
|
anbi12d |
|
| 27 |
|
fveq2 |
|
| 28 |
27 2
|
eqtr4di |
|
| 29 |
28
|
oveqd |
|
| 30 |
29
|
eleq2d |
|
| 31 |
28
|
oveqd |
|
| 32 |
31
|
eleq2d |
|
| 33 |
30 32
|
orbi12d |
|
| 34 |
33
|
3anbi3d |
|
| 35 |
26 34
|
anbi12d |
|
| 36 |
35
|
opabbidv |
|
| 37 |
23 36
|
mpteq12dv |
|
| 38 |
|
df-hlg |
|
| 39 |
37 38 1
|
mptfvmpt |
|
| 40 |
7 21 39
|
3syl |
|
| 41 |
3 40
|
eqtrid |
|
| 42 |
|
neeq2 |
|
| 43 |
|
neeq2 |
|
| 44 |
|
oveq1 |
|
| 45 |
44
|
eleq2d |
|
| 46 |
|
oveq1 |
|
| 47 |
46
|
eleq2d |
|
| 48 |
45 47
|
orbi12d |
|
| 49 |
42 43 48
|
3anbi123d |
|
| 50 |
49
|
anbi2d |
|
| 51 |
50
|
opabbidv |
|
| 52 |
51
|
adantl |
|
| 53 |
1
|
fvexi |
|
| 54 |
53 53
|
xpex |
|
| 55 |
|
opabssxp |
|
| 56 |
54 55
|
ssexi |
|
| 57 |
56
|
a1i |
|
| 58 |
41 52 6 57
|
fvmptd |
|
| 59 |
58
|
breqd |
|
| 60 |
4 5
|
jca |
|
| 61 |
60
|
biantrurd |
|
| 62 |
20 59 61
|
3bitr4d |
|