Description: An equivalent formulation of the basis predicate in a vector space, using a function F for generating the base. (Contributed by Thierry Arnoux, 20-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | islbs5.b | |
|
islbs5.k | |
||
islbs5.r | |
||
islbs5.t | |
||
islbs5.z | |
||
islbs5.y | |
||
islbs5.j | |
||
islbs5.n | |
||
islbs5.w | |
||
islbs5.s | |
||
islbs5.i | |
||
islbs5.f | |
||
Assertion | islbs5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islbs5.b | |
|
2 | islbs5.k | |
|
3 | islbs5.r | |
|
4 | islbs5.t | |
|
5 | islbs5.z | |
|
6 | islbs5.y | |
|
7 | islbs5.j | |
|
8 | islbs5.n | |
|
9 | islbs5.w | |
|
10 | islbs5.s | |
|
11 | islbs5.i | |
|
12 | islbs5.f | |
|
13 | eqid | |
|
14 | 1 13 3 4 5 6 8 9 10 11 12 | lindflbs | |
15 | f1f | |
|
16 | 12 15 | syl | |
17 | eqid | |
|
18 | 1 3 4 5 6 17 | islindf4 | |
19 | 9 11 16 18 | syl3anc | |
20 | 10 | elexd | |
21 | eqid | |
|
22 | 21 2 6 17 | frlmelbas | |
23 | 20 11 22 | syl2anc | |
24 | 23 | imbi1d | |
25 | impexp | |
|
26 | impexp | |
|
27 | 26 | a1i | |
28 | 27 | bicomd | |
29 | 28 | imbi2d | |
30 | 25 29 | bitrid | |
31 | 24 30 | bitrd | |
32 | 31 | ralbidv2 | |
33 | 19 32 | bitrd | |
34 | 33 | anbi1d | |
35 | 14 34 | bitrd | |