Metamath Proof Explorer


Theorem islbs5

Description: An equivalent formulation of the basis predicate in a vector space, using a function F for generating the base. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses islbs5.b B=BaseW
islbs5.k K=BaseS
islbs5.r S=ScalarW
islbs5.t ·˙=W
islbs5.z O=0W
islbs5.y 0˙=0S
islbs5.j J=LBasisW
islbs5.n N=LSpanW
islbs5.w φWLMod
islbs5.s φSNzRing
islbs5.i φIV
islbs5.f φF:I1-1B
Assertion islbs5 φranFLBasisWaKIfinSupp0˙aWa·˙fF=Oa=I×0˙NranF=B

Proof

Step Hyp Ref Expression
1 islbs5.b B=BaseW
2 islbs5.k K=BaseS
3 islbs5.r S=ScalarW
4 islbs5.t ·˙=W
5 islbs5.z O=0W
6 islbs5.y 0˙=0S
7 islbs5.j J=LBasisW
8 islbs5.n N=LSpanW
9 islbs5.w φWLMod
10 islbs5.s φSNzRing
11 islbs5.i φIV
12 islbs5.f φF:I1-1B
13 eqid BaseF=BaseF
14 1 13 3 4 5 6 8 9 10 11 12 lindflbs φranFLBasisWFLIndFWNranF=B
15 f1f F:I1-1BF:IB
16 12 15 syl φF:IB
17 eqid BaseSfreeLModI=BaseSfreeLModI
18 1 3 4 5 6 17 islindf4 WLModIVF:IBFLIndFWaBaseSfreeLModIWa·˙fF=Oa=I×0˙
19 9 11 16 18 syl3anc φFLIndFWaBaseSfreeLModIWa·˙fF=Oa=I×0˙
20 10 elexd φSV
21 eqid SfreeLModI=SfreeLModI
22 21 2 6 17 frlmelbas SVIVaBaseSfreeLModIaKIfinSupp0˙a
23 20 11 22 syl2anc φaBaseSfreeLModIaKIfinSupp0˙a
24 23 imbi1d φaBaseSfreeLModIWa·˙fF=Oa=I×0˙aKIfinSupp0˙aWa·˙fF=Oa=I×0˙
25 impexp aKIfinSupp0˙aWa·˙fF=Oa=I×0˙aKIfinSupp0˙aWa·˙fF=Oa=I×0˙
26 impexp finSupp0˙aWa·˙fF=Oa=I×0˙finSupp0˙aWa·˙fF=Oa=I×0˙
27 26 a1i φfinSupp0˙aWa·˙fF=Oa=I×0˙finSupp0˙aWa·˙fF=Oa=I×0˙
28 27 bicomd φfinSupp0˙aWa·˙fF=Oa=I×0˙finSupp0˙aWa·˙fF=Oa=I×0˙
29 28 imbi2d φaKIfinSupp0˙aWa·˙fF=Oa=I×0˙aKIfinSupp0˙aWa·˙fF=Oa=I×0˙
30 25 29 bitrid φaKIfinSupp0˙aWa·˙fF=Oa=I×0˙aKIfinSupp0˙aWa·˙fF=Oa=I×0˙
31 24 30 bitrd φaBaseSfreeLModIWa·˙fF=Oa=I×0˙aKIfinSupp0˙aWa·˙fF=Oa=I×0˙
32 31 ralbidv2 φaBaseSfreeLModIWa·˙fF=Oa=I×0˙aKIfinSupp0˙aWa·˙fF=Oa=I×0˙
33 19 32 bitrd φFLIndFWaKIfinSupp0˙aWa·˙fF=Oa=I×0˙
34 33 anbi1d φFLIndFWNranF=BaKIfinSupp0˙aWa·˙fF=Oa=I×0˙NranF=B
35 14 34 bitrd φranFLBasisWaKIfinSupp0˙aWa·˙fF=Oa=I×0˙NranF=B