Metamath Proof Explorer


Theorem ismbfm

Description: The predicate " F is a measurable function from the measurable space S to the measurable space T ". Cf. ismbf . (Contributed by Thierry Arnoux, 23-Jan-2017)

Ref Expression
Hypotheses ismbfm.1 φ S ran sigAlgebra
ismbfm.2 φ T ran sigAlgebra
Assertion ismbfm φ F S MblFn μ T F T S x T F -1 x S

Proof

Step Hyp Ref Expression
1 ismbfm.1 φ S ran sigAlgebra
2 ismbfm.2 φ T ran sigAlgebra
3 unieq s = S s = S
4 3 oveq2d s = S t s = t S
5 eleq2 s = S f -1 x s f -1 x S
6 5 ralbidv s = S x t f -1 x s x t f -1 x S
7 4 6 rabeqbidv s = S f t s | x t f -1 x s = f t S | x t f -1 x S
8 unieq t = T t = T
9 8 oveq1d t = T t S = T S
10 raleq t = T x t f -1 x S x T f -1 x S
11 9 10 rabeqbidv t = T f t S | x t f -1 x S = f T S | x T f -1 x S
12 df-mbfm MblFn μ = s ran sigAlgebra , t ran sigAlgebra f t s | x t f -1 x s
13 ovex T S V
14 13 rabex f T S | x T f -1 x S V
15 7 11 12 14 ovmpo S ran sigAlgebra T ran sigAlgebra S MblFn μ T = f T S | x T f -1 x S
16 1 2 15 syl2anc φ S MblFn μ T = f T S | x T f -1 x S
17 16 eleq2d φ F S MblFn μ T F f T S | x T f -1 x S
18 cnveq f = F f -1 = F -1
19 18 imaeq1d f = F f -1 x = F -1 x
20 19 eleq1d f = F f -1 x S F -1 x S
21 20 ralbidv f = F x T f -1 x S x T F -1 x S
22 21 elrab F f T S | x T f -1 x S F T S x T F -1 x S
23 17 22 bitrdi φ F S MblFn μ T F T S x T F -1 x S