Description: Converse law for isomorphism. Proposition 6.30(2) of TakeutiZaring p. 33. (Contributed by NM, 27-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | isocnv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv | |
|
2 | 1 | adantr | |
3 | f1ocnvfv2 | |
|
4 | 3 | adantrr | |
5 | f1ocnvfv2 | |
|
6 | 5 | adantrl | |
7 | 4 6 | breq12d | |
8 | 7 | adantlr | |
9 | f1of | |
|
10 | 1 9 | syl | |
11 | ffvelcdm | |
|
12 | ffvelcdm | |
|
13 | 11 12 | anim12dan | |
14 | breq1 | |
|
15 | fveq2 | |
|
16 | 15 | breq1d | |
17 | 14 16 | bibi12d | |
18 | bicom | |
|
19 | 17 18 | bitrdi | |
20 | fveq2 | |
|
21 | 20 | breq2d | |
22 | breq2 | |
|
23 | 21 22 | bibi12d | |
24 | 19 23 | rspc2va | |
25 | 13 24 | sylan | |
26 | 25 | an32s | |
27 | 10 26 | sylanl1 | |
28 | 8 27 | bitr3d | |
29 | 28 | ralrimivva | |
30 | 2 29 | jca | |
31 | df-isom | |
|
32 | df-isom | |
|
33 | 30 31 32 | 3imtr4i | |