Metamath Proof Explorer


Theorem isocnv

Description: Converse law for isomorphism. Proposition 6.30(2) of TakeutiZaring p. 33. (Contributed by NM, 27-Apr-2004)

Ref Expression
Assertion isocnv HIsomR,SABH-1IsomS,RBA

Proof

Step Hyp Ref Expression
1 f1ocnv H:A1-1 ontoBH-1:B1-1 ontoA
2 1 adantr H:A1-1 ontoBxAyAxRyHxSHyH-1:B1-1 ontoA
3 f1ocnvfv2 H:A1-1 ontoBzBHH-1z=z
4 3 adantrr H:A1-1 ontoBzBwBHH-1z=z
5 f1ocnvfv2 H:A1-1 ontoBwBHH-1w=w
6 5 adantrl H:A1-1 ontoBzBwBHH-1w=w
7 4 6 breq12d H:A1-1 ontoBzBwBHH-1zSHH-1wzSw
8 7 adantlr H:A1-1 ontoBxAyAxRyHxSHyzBwBHH-1zSHH-1wzSw
9 f1of H-1:B1-1 ontoAH-1:BA
10 1 9 syl H:A1-1 ontoBH-1:BA
11 ffvelcdm H-1:BAzBH-1zA
12 ffvelcdm H-1:BAwBH-1wA
13 11 12 anim12dan H-1:BAzBwBH-1zAH-1wA
14 breq1 x=H-1zxRyH-1zRy
15 fveq2 x=H-1zHx=HH-1z
16 15 breq1d x=H-1zHxSHyHH-1zSHy
17 14 16 bibi12d x=H-1zxRyHxSHyH-1zRyHH-1zSHy
18 bicom H-1zRyHH-1zSHyHH-1zSHyH-1zRy
19 17 18 bitrdi x=H-1zxRyHxSHyHH-1zSHyH-1zRy
20 fveq2 y=H-1wHy=HH-1w
21 20 breq2d y=H-1wHH-1zSHyHH-1zSHH-1w
22 breq2 y=H-1wH-1zRyH-1zRH-1w
23 21 22 bibi12d y=H-1wHH-1zSHyH-1zRyHH-1zSHH-1wH-1zRH-1w
24 19 23 rspc2va H-1zAH-1wAxAyAxRyHxSHyHH-1zSHH-1wH-1zRH-1w
25 13 24 sylan H-1:BAzBwBxAyAxRyHxSHyHH-1zSHH-1wH-1zRH-1w
26 25 an32s H-1:BAxAyAxRyHxSHyzBwBHH-1zSHH-1wH-1zRH-1w
27 10 26 sylanl1 H:A1-1 ontoBxAyAxRyHxSHyzBwBHH-1zSHH-1wH-1zRH-1w
28 8 27 bitr3d H:A1-1 ontoBxAyAxRyHxSHyzBwBzSwH-1zRH-1w
29 28 ralrimivva H:A1-1 ontoBxAyAxRyHxSHyzBwBzSwH-1zRH-1w
30 2 29 jca H:A1-1 ontoBxAyAxRyHxSHyH-1:B1-1 ontoAzBwBzSwH-1zRH-1w
31 df-isom HIsomR,SABH:A1-1 ontoBxAyAxRyHxSHy
32 df-isom H-1IsomS,RBAH-1:B1-1 ontoAzBwBzSwH-1zRH-1w
33 30 31 32 3imtr4i HIsomR,SABH-1IsomS,RBA