Description: Isomorphisms preserve minimal elements. Note that (`' R " { D } ) ` is Takeuti and Zaring's idiom for the initial segment { x | x R D } . Proposition 6.31(1) of TakeutiZaring p. 33. (Contributed by NM, 19-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | isomin | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neq0 | |
|
2 | vex | |
|
3 | 2 | elima | |
4 | ssel | |
|
5 | isof1o | |
|
6 | f1ofn | |
|
7 | fnbrfvb | |
|
8 | 7 | ex | |
9 | 5 6 8 | 3syl | |
10 | 4 9 | syl9r | |
11 | 10 | imp31 | |
12 | 11 | rexbidva | |
13 | 3 12 | bitr4id | |
14 | fvex | |
|
15 | 2 | eliniseg | |
16 | 14 15 | mp1i | |
17 | 13 16 | anbi12d | |
18 | elin | |
|
19 | r19.41v | |
|
20 | 17 18 19 | 3bitr4g | |
21 | 20 | adantrr | |
22 | breq1 | |
|
23 | 22 | biimpar | |
24 | vex | |
|
25 | 24 | eliniseg | |
26 | 25 | ad2antll | |
27 | isorel | |
|
28 | 26 27 | bitrd | |
29 | 23 28 | imbitrrid | |
30 | 29 | exp32 | |
31 | 4 30 | syl9r | |
32 | 31 | com34 | |
33 | 32 | imp32 | |
34 | 33 | reximdvai | |
35 | 21 34 | sylbid | |
36 | elin | |
|
37 | 36 | exbii | |
38 | neq0 | |
|
39 | df-rex | |
|
40 | 37 38 39 | 3bitr4i | |
41 | 35 40 | syl6ibr | |
42 | 41 | exlimdv | |
43 | 1 42 | biimtrid | |
44 | 43 | con4d | |
45 | 5 6 | syl | |
46 | fnfvima | |
|
47 | 46 | 3expia | |
48 | 47 | adantrr | |
49 | 45 48 | sylan | |
50 | 49 | adantrd | |
51 | 27 | biimpd | |
52 | fvex | |
|
53 | 52 | eliniseg | |
54 | 14 53 | ax-mp | |
55 | 51 54 | syl6ibr | |
56 | 26 55 | sylbid | |
57 | 56 | exp32 | |
58 | 4 57 | syl9r | |
59 | 58 | com34 | |
60 | 59 | imp32 | |
61 | 60 | impd | |
62 | 50 61 | jcad | |
63 | elin | |
|
64 | 62 36 63 | 3imtr4g | |
65 | n0i | |
|
66 | 64 65 | syl6 | |
67 | 66 | exlimdv | |
68 | 38 67 | biimtrid | |
69 | 44 68 | impcon4bid | |