Metamath Proof Explorer


Theorem isomin

Description: Isomorphisms preserve minimal elements. Note that (`' R " { D } ) ` is Takeuti and Zaring's idiom for the initial segment { x | x R D } . Proposition 6.31(1) of TakeutiZaring p. 33. (Contributed by NM, 19-Apr-2004)

Ref Expression
Assertion isomin HIsomR,SABCADACR-1D=HCS-1HD=

Proof

Step Hyp Ref Expression
1 neq0 ¬HCS-1HD=yyHCS-1HD
2 vex yV
3 2 elima yHCxCxHy
4 ssel CAxCxA
5 isof1o HIsomR,SABH:A1-1 ontoB
6 f1ofn H:A1-1 ontoBHFnA
7 fnbrfvb HFnAxAHx=yxHy
8 7 ex HFnAxAHx=yxHy
9 5 6 8 3syl HIsomR,SABxAHx=yxHy
10 4 9 syl9r HIsomR,SABCAxCHx=yxHy
11 10 imp31 HIsomR,SABCAxCHx=yxHy
12 11 rexbidva HIsomR,SABCAxCHx=yxCxHy
13 3 12 bitr4id HIsomR,SABCAyHCxCHx=y
14 fvex HDV
15 2 eliniseg HDVyS-1HDySHD
16 14 15 mp1i HIsomR,SABCAyS-1HDySHD
17 13 16 anbi12d HIsomR,SABCAyHCyS-1HDxCHx=yySHD
18 elin yHCS-1HDyHCyS-1HD
19 r19.41v xCHx=yySHDxCHx=yySHD
20 17 18 19 3bitr4g HIsomR,SABCAyHCS-1HDxCHx=yySHD
21 20 adantrr HIsomR,SABCADAyHCS-1HDxCHx=yySHD
22 breq1 Hx=yHxSHDySHD
23 22 biimpar Hx=yySHDHxSHD
24 vex xV
25 24 eliniseg DAxR-1DxRD
26 25 ad2antll HIsomR,SABxADAxR-1DxRD
27 isorel HIsomR,SABxADAxRDHxSHD
28 26 27 bitrd HIsomR,SABxADAxR-1DHxSHD
29 23 28 imbitrrid HIsomR,SABxADAHx=yySHDxR-1D
30 29 exp32 HIsomR,SABxADAHx=yySHDxR-1D
31 4 30 syl9r HIsomR,SABCAxCDAHx=yySHDxR-1D
32 31 com34 HIsomR,SABCADAxCHx=yySHDxR-1D
33 32 imp32 HIsomR,SABCADAxCHx=yySHDxR-1D
34 33 reximdvai HIsomR,SABCADAxCHx=yySHDxCxR-1D
35 21 34 sylbid HIsomR,SABCADAyHCS-1HDxCxR-1D
36 elin xCR-1DxCxR-1D
37 36 exbii xxCR-1DxxCxR-1D
38 neq0 ¬CR-1D=xxCR-1D
39 df-rex xCxR-1DxxCxR-1D
40 37 38 39 3bitr4i ¬CR-1D=xCxR-1D
41 35 40 syl6ibr HIsomR,SABCADAyHCS-1HD¬CR-1D=
42 41 exlimdv HIsomR,SABCADAyyHCS-1HD¬CR-1D=
43 1 42 biimtrid HIsomR,SABCADA¬HCS-1HD=¬CR-1D=
44 43 con4d HIsomR,SABCADACR-1D=HCS-1HD=
45 5 6 syl HIsomR,SABHFnA
46 fnfvima HFnACAxCHxHC
47 46 3expia HFnACAxCHxHC
48 47 adantrr HFnACADAxCHxHC
49 45 48 sylan HIsomR,SABCADAxCHxHC
50 49 adantrd HIsomR,SABCADAxCxR-1DHxHC
51 27 biimpd HIsomR,SABxADAxRDHxSHD
52 fvex HxV
53 52 eliniseg HDVHxS-1HDHxSHD
54 14 53 ax-mp HxS-1HDHxSHD
55 51 54 syl6ibr HIsomR,SABxADAxRDHxS-1HD
56 26 55 sylbid HIsomR,SABxADAxR-1DHxS-1HD
57 56 exp32 HIsomR,SABxADAxR-1DHxS-1HD
58 4 57 syl9r HIsomR,SABCAxCDAxR-1DHxS-1HD
59 58 com34 HIsomR,SABCADAxCxR-1DHxS-1HD
60 59 imp32 HIsomR,SABCADAxCxR-1DHxS-1HD
61 60 impd HIsomR,SABCADAxCxR-1DHxS-1HD
62 50 61 jcad HIsomR,SABCADAxCxR-1DHxHCHxS-1HD
63 elin HxHCS-1HDHxHCHxS-1HD
64 62 36 63 3imtr4g HIsomR,SABCADAxCR-1DHxHCS-1HD
65 n0i HxHCS-1HD¬HCS-1HD=
66 64 65 syl6 HIsomR,SABCADAxCR-1D¬HCS-1HD=
67 66 exlimdv HIsomR,SABCADAxxCR-1D¬HCS-1HD=
68 38 67 biimtrid HIsomR,SABCADA¬CR-1D=¬HCS-1HD=
69 44 68 impcon4bid HIsomR,SABCADACR-1D=HCS-1HD=