Metamath Proof Explorer


Theorem ispsmet

Description: Express the predicate " D is a pseudometric." (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion ispsmet XVDPsMetXD:X×X*xXxDx=0yXzXxDyzDx+𝑒zDy

Proof

Step Hyp Ref Expression
1 elex XVXV
2 id u=Xu=X
3 2 sqxpeqd u=Xu×u=X×X
4 3 oveq2d u=X*u×u=*X×X
5 raleq u=Xzuxdyzdx+𝑒zdyzXxdyzdx+𝑒zdy
6 5 raleqbi1dv u=Xyuzuxdyzdx+𝑒zdyyXzXxdyzdx+𝑒zdy
7 6 anbi2d u=Xxdx=0yuzuxdyzdx+𝑒zdyxdx=0yXzXxdyzdx+𝑒zdy
8 7 raleqbi1dv u=Xxuxdx=0yuzuxdyzdx+𝑒zdyxXxdx=0yXzXxdyzdx+𝑒zdy
9 4 8 rabeqbidv u=Xd*u×u|xuxdx=0yuzuxdyzdx+𝑒zdy=d*X×X|xXxdx=0yXzXxdyzdx+𝑒zdy
10 df-psmet PsMet=uVd*u×u|xuxdx=0yuzuxdyzdx+𝑒zdy
11 ovex *X×XV
12 11 rabex d*X×X|xXxdx=0yXzXxdyzdx+𝑒zdyV
13 9 10 12 fvmpt XVPsMetX=d*X×X|xXxdx=0yXzXxdyzdx+𝑒zdy
14 1 13 syl XVPsMetX=d*X×X|xXxdx=0yXzXxdyzdx+𝑒zdy
15 14 eleq2d XVDPsMetXDd*X×X|xXxdx=0yXzXxdyzdx+𝑒zdy
16 oveq d=Dxdx=xDx
17 16 eqeq1d d=Dxdx=0xDx=0
18 oveq d=Dxdy=xDy
19 oveq d=Dzdx=zDx
20 oveq d=Dzdy=zDy
21 19 20 oveq12d d=Dzdx+𝑒zdy=zDx+𝑒zDy
22 18 21 breq12d d=Dxdyzdx+𝑒zdyxDyzDx+𝑒zDy
23 22 2ralbidv d=DyXzXxdyzdx+𝑒zdyyXzXxDyzDx+𝑒zDy
24 17 23 anbi12d d=Dxdx=0yXzXxdyzdx+𝑒zdyxDx=0yXzXxDyzDx+𝑒zDy
25 24 ralbidv d=DxXxdx=0yXzXxdyzdx+𝑒zdyxXxDx=0yXzXxDyzDx+𝑒zDy
26 25 elrab Dd*X×X|xXxdx=0yXzXxdyzdx+𝑒zdyD*X×XxXxDx=0yXzXxDyzDx+𝑒zDy
27 15 26 bitrdi XVDPsMetXD*X×XxXxDx=0yXzXxDyzDx+𝑒zDy
28 xrex *V
29 sqxpexg XVX×XV
30 elmapg *VX×XVD*X×XD:X×X*
31 28 29 30 sylancr XVD*X×XD:X×X*
32 31 anbi1d XVD*X×XxXxDx=0yXzXxDyzDx+𝑒zDyD:X×X*xXxDx=0yXzXxDyzDx+𝑒zDy
33 27 32 bitrd XVDPsMetXD:X×X*xXxDx=0yXzXxDyzDx+𝑒zDy