Description: The property of being a sigma-algebra on an indefinite base set. (Contributed by Thierry Arnoux, 3-Sep-2016) (Proof shortened by Thierry Arnoux, 23-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | isrnsiga | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-siga | |
|
2 | sigaex | |
|
3 | sseq1 | |
|
4 | eleq2 | |
|
5 | eleq2 | |
|
6 | 5 | raleqbi1dv | |
7 | pweq | |
|
8 | eleq2 | |
|
9 | 8 | imbi2d | |
10 | 7 9 | raleqbidv | |
11 | 4 6 10 | 3anbi123d | |
12 | 3 11 | anbi12d | |
13 | 1 2 12 | abfmpunirn | |
14 | rexv | |
|
15 | 14 | anbi2i | |
16 | 13 15 | bitri | |