Metamath Proof Explorer


Theorem isrnsiga

Description: The property of being a sigma-algebra on an indefinite base set. (Contributed by Thierry Arnoux, 3-Sep-2016) (Proof shortened by Thierry Arnoux, 23-Oct-2016)

Ref Expression
Assertion isrnsiga S ran sigAlgebra S V o S 𝒫 o o S x S o x S x 𝒫 S x ω x S

Proof

Step Hyp Ref Expression
1 df-siga sigAlgebra = o V s | s 𝒫 o o s x s o x s x 𝒫 s x ω x s
2 sigaex s | s 𝒫 o o s x s o x s x 𝒫 s x ω x s V
3 sseq1 s = S s 𝒫 o S 𝒫 o
4 eleq2 s = S o s o S
5 eleq2 s = S o x s o x S
6 5 raleqbi1dv s = S x s o x s x S o x S
7 pweq s = S 𝒫 s = 𝒫 S
8 eleq2 s = S x s x S
9 8 imbi2d s = S x ω x s x ω x S
10 7 9 raleqbidv s = S x 𝒫 s x ω x s x 𝒫 S x ω x S
11 4 6 10 3anbi123d s = S o s x s o x s x 𝒫 s x ω x s o S x S o x S x 𝒫 S x ω x S
12 3 11 anbi12d s = S s 𝒫 o o s x s o x s x 𝒫 s x ω x s S 𝒫 o o S x S o x S x 𝒫 S x ω x S
13 1 2 12 abfmpunirn S ran sigAlgebra S V o V S 𝒫 o o S x S o x S x 𝒫 S x ω x S
14 rexv o V S 𝒫 o o S x S o x S x 𝒫 S x ω x S o S 𝒫 o o S x S o x S x 𝒫 S x ω x S
15 14 anbi2i S V o V S 𝒫 o o S x S o x S x 𝒫 S x ω x S S V o S 𝒫 o o S x S o x S x 𝒫 S x ω x S
16 13 15 bitri S ran sigAlgebra S V o S 𝒫 o o S x S o x S x 𝒫 S x ω x S