Metamath Proof Explorer


Theorem isrnsiga

Description: The property of being a sigma-algebra on an indefinite base set. (Contributed by Thierry Arnoux, 3-Sep-2016) (Proof shortened by Thierry Arnoux, 23-Oct-2016)

Ref Expression
Assertion isrnsiga SransigAlgebraSVoS𝒫ooSxSoxSx𝒫SxωxS

Proof

Step Hyp Ref Expression
1 df-siga sigAlgebra=oVs|s𝒫oosxsoxsx𝒫sxωxs
2 sigaex s|s𝒫oosxsoxsx𝒫sxωxsV
3 sseq1 s=Ss𝒫oS𝒫o
4 eleq2 s=SosoS
5 eleq2 s=SoxsoxS
6 5 raleqbi1dv s=SxsoxsxSoxS
7 pweq s=S𝒫s=𝒫S
8 eleq2 s=SxsxS
9 8 imbi2d s=SxωxsxωxS
10 7 9 raleqbidv s=Sx𝒫sxωxsx𝒫SxωxS
11 4 6 10 3anbi123d s=Sosxsoxsx𝒫sxωxsoSxSoxSx𝒫SxωxS
12 3 11 anbi12d s=Ss𝒫oosxsoxsx𝒫sxωxsS𝒫ooSxSoxSx𝒫SxωxS
13 1 2 12 abfmpunirn SransigAlgebraSVoVS𝒫ooSxSoxSx𝒫SxωxS
14 rexv oVS𝒫ooSxSoxSx𝒫SxωxSoS𝒫ooSxSoxSx𝒫SxωxS
15 14 anbi2i SVoVS𝒫ooSxSoxSx𝒫SxωxSSVoS𝒫ooSxSoxSx𝒫SxωxS
16 13 15 bitri SransigAlgebraSVoS𝒫ooSxSoxSx𝒫SxωxS