Metamath Proof Explorer


Theorem issalgend

Description: One side of dfsalgen2 . If a sigma-algebra on U. X includes X and it is included in all the sigma-algebras with such two properties, then it is the sigma-algebra generated by X . (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses issalgend.x φXV
issalgend.s φSSAlg
issalgend.u φS=X
issalgend.i φXS
issalgend.a φySAlgy=XXySy
Assertion issalgend φSalGenX=S

Proof

Step Hyp Ref Expression
1 issalgend.x φXV
2 issalgend.s φSSAlg
3 issalgend.u φS=X
4 issalgend.i φXS
5 issalgend.a φySAlgy=XXySy
6 eqid SalGenX=SalGenX
7 1 6 2 4 3 salgenss φSalGenXS
8 simpl φysSAlg|s=XXsφ
9 elrabi ysSAlg|s=XXsySAlg
10 9 adantl φysSAlg|s=XXsySAlg
11 unieq s=ys=y
12 11 eqeq1d s=ys=Xy=X
13 sseq2 s=yXsXy
14 12 13 anbi12d s=ys=XXsy=XXy
15 14 elrab ysSAlg|s=XXsySAlgy=XXy
16 15 biimpi ysSAlg|s=XXsySAlgy=XXy
17 16 simprld ysSAlg|s=XXsy=X
18 17 adantl φysSAlg|s=XXsy=X
19 16 simprrd ysSAlg|s=XXsXy
20 19 adantl φysSAlg|s=XXsXy
21 8 10 18 20 5 syl13anc φysSAlg|s=XXsSy
22 21 ralrimiva φysSAlg|s=XXsSy
23 ssint SsSAlg|s=XXsysSAlg|s=XXsSy
24 22 23 sylibr φSsSAlg|s=XXs
25 salgenval XVSalGenX=sSAlg|s=XXs
26 1 25 syl φSalGenX=sSAlg|s=XXs
27 24 26 sseqtrrd φSSalGenX
28 7 27 eqssd φSalGenX=S