Description: One side of dfsalgen2 . If a sigma-algebra on U. X includes X and it is included in all the sigma-algebras with such two properties, then it is the sigma-algebra generated by X . (Contributed by Glauco Siliprandi, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issalgend.x | |
|
issalgend.s | |
||
issalgend.u | |
||
issalgend.i | |
||
issalgend.a | |
||
Assertion | issalgend | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issalgend.x | |
|
2 | issalgend.s | |
|
3 | issalgend.u | |
|
4 | issalgend.i | |
|
5 | issalgend.a | |
|
6 | eqid | |
|
7 | 1 6 2 4 3 | salgenss | |
8 | simpl | |
|
9 | elrabi | |
|
10 | 9 | adantl | |
11 | unieq | |
|
12 | 11 | eqeq1d | |
13 | sseq2 | |
|
14 | 12 13 | anbi12d | |
15 | 14 | elrab | |
16 | 15 | biimpi | |
17 | 16 | simprld | |
18 | 17 | adantl | |
19 | 16 | simprrd | |
20 | 19 | adantl | |
21 | 8 10 18 20 5 | syl13anc | |
22 | 21 | ralrimiva | |
23 | ssint | |
|
24 | 22 23 | sylibr | |
25 | salgenval | |
|
26 | 1 25 | syl | |
27 | 24 26 | sseqtrrd | |
28 | 7 27 | eqssd | |