Description: Property of being a sigma-algebra with a given base set, noting that the base set of a sigma-algebra is actually its union set. (Contributed by Thierry Arnoux, 24-Sep-2016) (Revised by Thierry Arnoux, 23-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | issgon | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvssunirn | |
|
2 | 1 | sseli | |
3 | elex | |
|
4 | issiga | |
|
5 | elpwuni | |
|
6 | 5 | biimpa | |
7 | ancom | |
|
8 | eqcom | |
|
9 | 6 7 8 | 3imtr4i | |
10 | 9 | 3ad2antr1 | |
11 | 4 10 | syl6bi | |
12 | 3 11 | mpcom | |
13 | 2 12 | jca | |
14 | elex | |
|
15 | isrnsiga | |
|
16 | 15 | simprbi | |
17 | elpwuni | |
|
18 | 17 | biimpa | |
19 | ancom | |
|
20 | eqcom | |
|
21 | 18 19 20 | 3imtr4i | |
22 | 21 | 3ad2antr1 | |
23 | pweq | |
|
24 | 23 | sseq2d | |
25 | eleq1 | |
|
26 | difeq1 | |
|
27 | 26 | eleq1d | |
28 | 27 | ralbidv | |
29 | 25 28 | 3anbi12d | |
30 | 24 29 | anbi12d | |
31 | 22 30 | syl | |
32 | 31 | ibi | |
33 | 32 | exlimiv | |
34 | 16 33 | syl | |
35 | 34 | simprd | |
36 | 14 35 | jca | |
37 | eleq1 | |
|
38 | difeq1 | |
|
39 | 38 | eleq1d | |
40 | 39 | ralbidv | |
41 | 37 40 | 3anbi12d | |
42 | 41 | biimprd | |
43 | pwuni | |
|
44 | pweq | |
|
45 | 43 44 | sseqtrrid | |
46 | 42 45 | jctild | |
47 | 46 | anim2d | |
48 | 4 | biimpar | |
49 | 36 47 48 | syl56 | |
50 | 49 | impcom | |
51 | 13 50 | impbii | |