| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvssunirn |
|
| 2 |
1
|
sseli |
|
| 3 |
|
elex |
|
| 4 |
|
issiga |
|
| 5 |
|
elpwuni |
|
| 6 |
5
|
biimpa |
|
| 7 |
|
ancom |
|
| 8 |
|
eqcom |
|
| 9 |
6 7 8
|
3imtr4i |
|
| 10 |
9
|
3ad2antr1 |
|
| 11 |
4 10
|
biimtrdi |
|
| 12 |
3 11
|
mpcom |
|
| 13 |
2 12
|
jca |
|
| 14 |
|
elex |
|
| 15 |
|
isrnsiga |
|
| 16 |
15
|
simprbi |
|
| 17 |
|
elpwuni |
|
| 18 |
17
|
biimpa |
|
| 19 |
|
ancom |
|
| 20 |
|
eqcom |
|
| 21 |
18 19 20
|
3imtr4i |
|
| 22 |
21
|
3ad2antr1 |
|
| 23 |
|
pweq |
|
| 24 |
23
|
sseq2d |
|
| 25 |
|
eleq1 |
|
| 26 |
|
difeq1 |
|
| 27 |
26
|
eleq1d |
|
| 28 |
27
|
ralbidv |
|
| 29 |
25 28
|
3anbi12d |
|
| 30 |
24 29
|
anbi12d |
|
| 31 |
22 30
|
syl |
|
| 32 |
31
|
ibi |
|
| 33 |
32
|
exlimiv |
|
| 34 |
16 33
|
syl |
|
| 35 |
34
|
simprd |
|
| 36 |
14 35
|
jca |
|
| 37 |
|
eleq1 |
|
| 38 |
|
difeq1 |
|
| 39 |
38
|
eleq1d |
|
| 40 |
39
|
ralbidv |
|
| 41 |
37 40
|
3anbi12d |
|
| 42 |
41
|
biimprd |
|
| 43 |
|
pwuni |
|
| 44 |
|
pweq |
|
| 45 |
43 44
|
sseqtrrid |
|
| 46 |
42 45
|
jctild |
|
| 47 |
46
|
anim2d |
|
| 48 |
4
|
biimpar |
|
| 49 |
36 47 48
|
syl56 |
|
| 50 |
49
|
impcom |
|
| 51 |
13 50
|
impbii |
|