Metamath Proof Explorer


Theorem issgon

Description: Property of being a sigma-algebra with a given base set, noting that the base set of a sigma-algebra is actually its union set. (Contributed by Thierry Arnoux, 24-Sep-2016) (Revised by Thierry Arnoux, 23-Oct-2016)

Ref Expression
Assertion issgon SsigAlgebraOSransigAlgebraO=S

Proof

Step Hyp Ref Expression
1 fvssunirn sigAlgebraOransigAlgebra
2 1 sseli SsigAlgebraOSransigAlgebra
3 elex SsigAlgebraOSV
4 issiga SVSsigAlgebraOS𝒫OOSxSOxSx𝒫SxωxS
5 elpwuni OSS𝒫OS=O
6 5 biimpa OSS𝒫OS=O
7 ancom S𝒫OOSOSS𝒫O
8 eqcom O=SS=O
9 6 7 8 3imtr4i S𝒫OOSO=S
10 9 3ad2antr1 S𝒫OOSxSOxSx𝒫SxωxSO=S
11 4 10 syl6bi SVSsigAlgebraOO=S
12 3 11 mpcom SsigAlgebraOO=S
13 2 12 jca SsigAlgebraOSransigAlgebraO=S
14 elex SransigAlgebraSV
15 isrnsiga SransigAlgebraSVoS𝒫ooSxSoxSx𝒫SxωxS
16 15 simprbi SransigAlgebraoS𝒫ooSxSoxSx𝒫SxωxS
17 elpwuni oSS𝒫oS=o
18 17 biimpa oSS𝒫oS=o
19 ancom S𝒫ooSoSS𝒫o
20 eqcom o=SS=o
21 18 19 20 3imtr4i S𝒫ooSo=S
22 21 3ad2antr1 S𝒫ooSxSoxSx𝒫SxωxSo=S
23 pweq o=S𝒫o=𝒫S
24 23 sseq2d o=SS𝒫oS𝒫S
25 eleq1 o=SoSSS
26 difeq1 o=Sox=Sx
27 26 eleq1d o=SoxSSxS
28 27 ralbidv o=SxSoxSxSSxS
29 25 28 3anbi12d o=SoSxSoxSx𝒫SxωxSSSxSSxSx𝒫SxωxS
30 24 29 anbi12d o=SS𝒫ooSxSoxSx𝒫SxωxSS𝒫SSSxSSxSx𝒫SxωxS
31 22 30 syl S𝒫ooSxSoxSx𝒫SxωxSS𝒫ooSxSoxSx𝒫SxωxSS𝒫SSSxSSxSx𝒫SxωxS
32 31 ibi S𝒫ooSxSoxSx𝒫SxωxSS𝒫SSSxSSxSx𝒫SxωxS
33 32 exlimiv oS𝒫ooSxSoxSx𝒫SxωxSS𝒫SSSxSSxSx𝒫SxωxS
34 16 33 syl SransigAlgebraS𝒫SSSxSSxSx𝒫SxωxS
35 34 simprd SransigAlgebraSSxSSxSx𝒫SxωxS
36 14 35 jca SransigAlgebraSVSSxSSxSx𝒫SxωxS
37 eleq1 O=SOSSS
38 difeq1 O=SOx=Sx
39 38 eleq1d O=SOxSSxS
40 39 ralbidv O=SxSOxSxSSxS
41 37 40 3anbi12d O=SOSxSOxSx𝒫SxωxSSSxSSxSx𝒫SxωxS
42 41 biimprd O=SSSxSSxSx𝒫SxωxSOSxSOxSx𝒫SxωxS
43 pwuni S𝒫S
44 pweq O=S𝒫O=𝒫S
45 43 44 sseqtrrid O=SS𝒫O
46 42 45 jctild O=SSSxSSxSx𝒫SxωxSS𝒫OOSxSOxSx𝒫SxωxS
47 46 anim2d O=SSVSSxSSxSx𝒫SxωxSSVS𝒫OOSxSOxSx𝒫SxωxS
48 4 biimpar SVS𝒫OOSxSOxSx𝒫SxωxSSsigAlgebraO
49 36 47 48 syl56 O=SSransigAlgebraSsigAlgebraO
50 49 impcom SransigAlgebraO=SSsigAlgebraO
51 13 50 impbii SsigAlgebraOSransigAlgebraO=S