Metamath Proof Explorer


Theorem issmfdf

Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfdf.x _ x F
issmfdf.a a φ
issmfdf.s φ S SAlg
issmfdf.d φ D S
issmfdf.f φ F : D
issmfdf.p φ a x D | F x < a S 𝑡 D
Assertion issmfdf φ F SMblFn S

Proof

Step Hyp Ref Expression
1 issmfdf.x _ x F
2 issmfdf.a a φ
3 issmfdf.s φ S SAlg
4 issmfdf.d φ D S
5 issmfdf.f φ F : D
6 issmfdf.p φ a x D | F x < a S 𝑡 D
7 5 fdmd φ dom F = D
8 7 4 eqsstrd φ dom F S
9 5 ffdmd φ F : dom F
10 1 nfdm _ x dom F
11 nfcv _ x D
12 10 11 rabeqf dom F = D x dom F | F x < a = x D | F x < a
13 7 12 syl φ x dom F | F x < a = x D | F x < a
14 7 oveq2d φ S 𝑡 dom F = S 𝑡 D
15 13 14 eleq12d φ x dom F | F x < a S 𝑡 dom F x D | F x < a S 𝑡 D
16 15 adantr φ a x dom F | F x < a S 𝑡 dom F x D | F x < a S 𝑡 D
17 6 16 mpbird φ a x dom F | F x < a S 𝑡 dom F
18 17 ex φ a x dom F | F x < a S 𝑡 dom F
19 2 18 ralrimi φ a x dom F | F x < a S 𝑡 dom F
20 8 9 19 3jca φ dom F S F : dom F a x dom F | F x < a S 𝑡 dom F
21 eqid dom F = dom F
22 1 3 21 issmff φ F SMblFn S dom F S F : dom F a x dom F | F x < a S 𝑡 dom F
23 20 22 mpbird φ F SMblFn S