Metamath Proof Explorer


Theorem issmfdf

Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfdf.x _xF
issmfdf.a aφ
issmfdf.s φSSAlg
issmfdf.d φDS
issmfdf.f φF:D
issmfdf.p φaxD|Fx<aS𝑡D
Assertion issmfdf φFSMblFnS

Proof

Step Hyp Ref Expression
1 issmfdf.x _xF
2 issmfdf.a aφ
3 issmfdf.s φSSAlg
4 issmfdf.d φDS
5 issmfdf.f φF:D
6 issmfdf.p φaxD|Fx<aS𝑡D
7 5 fdmd φdomF=D
8 7 4 eqsstrd φdomFS
9 5 ffdmd φF:domF
10 1 nfdm _xdomF
11 nfcv _xD
12 10 11 rabeqf domF=DxdomF|Fx<a=xD|Fx<a
13 7 12 syl φxdomF|Fx<a=xD|Fx<a
14 7 oveq2d φS𝑡domF=S𝑡D
15 13 14 eleq12d φxdomF|Fx<aS𝑡domFxD|Fx<aS𝑡D
16 15 adantr φaxdomF|Fx<aS𝑡domFxD|Fx<aS𝑡D
17 6 16 mpbird φaxdomF|Fx<aS𝑡domF
18 17 ex φaxdomF|Fx<aS𝑡domF
19 2 18 ralrimi φaxdomF|Fx<aS𝑡domF
20 8 9 19 3jca φdomFSF:domFaxdomF|Fx<aS𝑡domF
21 eqid domF=domF
22 1 3 21 issmff φFSMblFnSdomFSF:domFaxdomF|Fx<aS𝑡domF
23 20 22 mpbird φFSMblFnS