| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubrng2.b |
|
| 2 |
|
issubrng2.t |
|
| 3 |
|
subrngsubg |
|
| 4 |
2
|
subrngmcl |
|
| 5 |
4
|
3expb |
|
| 6 |
5
|
ralrimivva |
|
| 7 |
3 6
|
jca |
|
| 8 |
|
simpl |
|
| 9 |
|
simprl |
|
| 10 |
|
eqid |
|
| 11 |
10
|
subgbas |
|
| 12 |
9 11
|
syl |
|
| 13 |
|
eqid |
|
| 14 |
10 13
|
ressplusg |
|
| 15 |
9 14
|
syl |
|
| 16 |
10 2
|
ressmulr |
|
| 17 |
9 16
|
syl |
|
| 18 |
|
rngabl |
|
| 19 |
10
|
subgabl |
|
| 20 |
18 9 19
|
syl2an2r |
|
| 21 |
|
simprr |
|
| 22 |
|
oveq1 |
|
| 23 |
22
|
eleq1d |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
eleq1d |
|
| 26 |
23 25
|
rspc2v |
|
| 27 |
21 26
|
syl5com |
|
| 28 |
27
|
3impib |
|
| 29 |
1
|
subgss |
|
| 30 |
9 29
|
syl |
|
| 31 |
30
|
sseld |
|
| 32 |
30
|
sseld |
|
| 33 |
30
|
sseld |
|
| 34 |
31 32 33
|
3anim123d |
|
| 35 |
34
|
imp |
|
| 36 |
1 2
|
rngass |
|
| 37 |
36
|
adantlr |
|
| 38 |
35 37
|
syldan |
|
| 39 |
1 13 2
|
rngdi |
|
| 40 |
39
|
adantlr |
|
| 41 |
35 40
|
syldan |
|
| 42 |
1 13 2
|
rngdir |
|
| 43 |
42
|
adantlr |
|
| 44 |
35 43
|
syldan |
|
| 45 |
12 15 17 20 28 38 41 44
|
isrngd |
|
| 46 |
1
|
issubrng |
|
| 47 |
8 45 30 46
|
syl3anbrc |
|
| 48 |
47
|
ex |
|
| 49 |
7 48
|
impbid2 |
|