Description: An alternate characterization of T_1 spaces. (Contributed by Jeff Hankins, 31-Jan-2010) (Proof shortened by Mario Carneiro, 24-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ist1-2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop | |
|
2 | eqid | |
|
3 | 2 | ist1 | |
4 | 3 | baib | |
5 | 1 4 | syl | |
6 | toponuni | |
|
7 | 6 | raleqdv | |
8 | 1 | adantr | |
9 | eltop2 | |
|
10 | 8 9 | syl | |
11 | 6 | eleq2d | |
12 | 11 | biimpa | |
13 | 12 | snssd | |
14 | 2 | iscld2 | |
15 | 8 13 14 | syl2anc | |
16 | 6 | adantr | |
17 | 16 | eleq2d | |
18 | 17 | imbi1d | |
19 | con1b | |
|
20 | df-ne | |
|
21 | 20 | imbi1i | |
22 | disjsn | |
|
23 | elssuni | |
|
24 | reldisj | |
|
25 | 23 24 | syl | |
26 | 22 25 | bitr3id | |
27 | 26 | anbi2d | |
28 | 27 | rexbiia | |
29 | rexanali | |
|
30 | 28 29 | bitr3i | |
31 | 30 | con2bii | |
32 | 31 | imbi1i | |
33 | 19 21 32 | 3bitr4ri | |
34 | 33 | imbi2i | |
35 | eldifsn | |
|
36 | 35 | imbi1i | |
37 | impexp | |
|
38 | 36 37 | bitri | |
39 | 18 34 38 | 3bitr4g | |
40 | 39 | ralbidv2 | |
41 | 10 15 40 | 3bitr4d | |
42 | 41 | ralbidva | |
43 | ralcom | |
|
44 | 42 43 | bitrdi | |
45 | 5 7 44 | 3bitr2d | |