| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topontop |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 | 2 | ist1 |  | 
						
							| 4 | 3 | baib |  | 
						
							| 5 | 1 4 | syl |  | 
						
							| 6 |  | toponuni |  | 
						
							| 7 | 6 | raleqdv |  | 
						
							| 8 | 1 | adantr |  | 
						
							| 9 |  | eltop2 |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 | 6 | eleq2d |  | 
						
							| 12 | 11 | biimpa |  | 
						
							| 13 | 12 | snssd |  | 
						
							| 14 | 2 | iscld2 |  | 
						
							| 15 | 8 13 14 | syl2anc |  | 
						
							| 16 | 6 | adantr |  | 
						
							| 17 | 16 | eleq2d |  | 
						
							| 18 | 17 | imbi1d |  | 
						
							| 19 |  | con1b |  | 
						
							| 20 |  | df-ne |  | 
						
							| 21 | 20 | imbi1i |  | 
						
							| 22 |  | disjsn |  | 
						
							| 23 |  | elssuni |  | 
						
							| 24 |  | reldisj |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 | 22 25 | bitr3id |  | 
						
							| 27 | 26 | anbi2d |  | 
						
							| 28 | 27 | rexbiia |  | 
						
							| 29 |  | rexanali |  | 
						
							| 30 | 28 29 | bitr3i |  | 
						
							| 31 | 30 | con2bii |  | 
						
							| 32 | 31 | imbi1i |  | 
						
							| 33 | 19 21 32 | 3bitr4ri |  | 
						
							| 34 | 33 | imbi2i |  | 
						
							| 35 |  | eldifsn |  | 
						
							| 36 | 35 | imbi1i |  | 
						
							| 37 |  | impexp |  | 
						
							| 38 | 36 37 | bitri |  | 
						
							| 39 | 18 34 38 | 3bitr4g |  | 
						
							| 40 | 39 | ralbidv2 |  | 
						
							| 41 | 10 15 40 | 3bitr4d |  | 
						
							| 42 | 41 | ralbidva |  | 
						
							| 43 |  | ralcom |  | 
						
							| 44 | 42 43 | bitrdi |  | 
						
							| 45 | 5 7 44 | 3bitr2d |  |