Metamath Proof Explorer


Theorem ist1-2

Description: An alternate characterization of T_1 spaces. (Contributed by Jeff Hankins, 31-Jan-2010) (Proof shortened by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion ist1-2 JTopOnXJFrexXyXoJxoyox=y

Proof

Step Hyp Ref Expression
1 topontop JTopOnXJTop
2 eqid J=J
3 2 ist1 JFreJTopyJyClsdJ
4 3 baib JTopJFreyJyClsdJ
5 1 4 syl JTopOnXJFreyJyClsdJ
6 toponuni JTopOnXX=J
7 6 raleqdv JTopOnXyXyClsdJyJyClsdJ
8 1 adantr JTopOnXyXJTop
9 eltop2 JTopJyJxJyoJxooJy
10 8 9 syl JTopOnXyXJyJxJyoJxooJy
11 6 eleq2d JTopOnXyXyJ
12 11 biimpa JTopOnXyXyJ
13 12 snssd JTopOnXyXyJ
14 2 iscld2 JTopyJyClsdJJyJ
15 8 13 14 syl2anc JTopOnXyXyClsdJJyJ
16 6 adantr JTopOnXyXX=J
17 16 eleq2d JTopOnXyXxXxJ
18 17 imbi1d JTopOnXyXxXxyoJxooJyxJxyoJxooJy
19 con1b ¬x=yoJxooJy¬oJxooJyx=y
20 df-ne xy¬x=y
21 20 imbi1i xyoJxooJy¬x=yoJxooJy
22 disjsn oy=¬yo
23 elssuni oJoJ
24 reldisj oJoy=oJy
25 23 24 syl oJoy=oJy
26 22 25 bitr3id oJ¬yooJy
27 26 anbi2d oJxo¬yoxooJy
28 27 rexbiia oJxo¬yooJxooJy
29 rexanali oJxo¬yo¬oJxoyo
30 28 29 bitr3i oJxooJy¬oJxoyo
31 30 con2bii oJxoyo¬oJxooJy
32 31 imbi1i oJxoyox=y¬oJxooJyx=y
33 19 21 32 3bitr4ri oJxoyox=yxyoJxooJy
34 33 imbi2i xXoJxoyox=yxXxyoJxooJy
35 eldifsn xJyxJxy
36 35 imbi1i xJyoJxooJyxJxyoJxooJy
37 impexp xJxyoJxooJyxJxyoJxooJy
38 36 37 bitri xJyoJxooJyxJxyoJxooJy
39 18 34 38 3bitr4g JTopOnXyXxXoJxoyox=yxJyoJxooJy
40 39 ralbidv2 JTopOnXyXxXoJxoyox=yxJyoJxooJy
41 10 15 40 3bitr4d JTopOnXyXyClsdJxXoJxoyox=y
42 41 ralbidva JTopOnXyXyClsdJyXxXoJxoyox=y
43 ralcom yXxXoJxoyox=yxXyXoJxoyox=y
44 42 43 bitrdi JTopOnXyXyClsdJxXyXoJxoyox=y
45 5 7 44 3bitr2d JTopOnXJFrexXyXoJxoyox=y