Metamath Proof Explorer


Theorem istendo

Description: The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in Crawley p. 117, penultimate line. (Contributed by NM, 8-Jun-2013)

Ref Expression
Hypotheses tendoset.l ˙=K
tendoset.h H=LHypK
tendoset.t T=LTrnKW
tendoset.r R=trLKW
tendoset.e E=TEndoKW
Assertion istendo KVWHSES:TTfTgTSfg=SfSgfTRSf˙Rf

Proof

Step Hyp Ref Expression
1 tendoset.l ˙=K
2 tendoset.h H=LHypK
3 tendoset.t T=LTrnKW
4 tendoset.r R=trLKW
5 tendoset.e E=TEndoKW
6 1 2 3 4 5 tendoset KVWHE=s|s:TTfTgTsfg=sfsgfTRsf˙Rf
7 6 eleq2d KVWHSESs|s:TTfTgTsfg=sfsgfTRsf˙Rf
8 3 fvexi TV
9 fex S:TTTVSV
10 8 9 mpan2 S:TTSV
11 10 3ad2ant1 S:TTfTgTSfg=SfSgfTRSf˙RfSV
12 feq1 s=Ss:TTS:TT
13 fveq1 s=Ssfg=Sfg
14 fveq1 s=Ssf=Sf
15 fveq1 s=Ssg=Sg
16 14 15 coeq12d s=Ssfsg=SfSg
17 13 16 eqeq12d s=Ssfg=sfsgSfg=SfSg
18 17 2ralbidv s=SfTgTsfg=sfsgfTgTSfg=SfSg
19 14 fveq2d s=SRsf=RSf
20 19 breq1d s=SRsf˙RfRSf˙Rf
21 20 ralbidv s=SfTRsf˙RffTRSf˙Rf
22 12 18 21 3anbi123d s=Ss:TTfTgTsfg=sfsgfTRsf˙RfS:TTfTgTSfg=SfSgfTRSf˙Rf
23 11 22 elab3 Ss|s:TTfTgTsfg=sfsgfTRsf˙RfS:TTfTgTSfg=SfSgfTRSf˙Rf
24 7 23 bitrdi KVWHSES:TTfTgTSfg=SfSgfTRSf˙Rf